aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgelss.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgelss.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgelss.c')
-rw-r--r--contrib/libs/clapack/zgelss.c828
1 files changed, 828 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgelss.c b/contrib/libs/clapack/zgelss.c
new file mode 100644
index 0000000000..29caf0ed7c
--- /dev/null
+++ b/contrib/libs/clapack/zgelss.c
@@ -0,0 +1,828 @@
+/* zgelss.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {0.,0.};
+static doublecomplex c_b2 = {1.,0.};
+static integer c__6 = 6;
+static integer c_n1 = -1;
+static integer c__1 = 1;
+static integer c__0 = 0;
+static doublereal c_b78 = 0.;
+
+/* Subroutine */ int zgelss_(integer *m, integer *n, integer *nrhs,
+ doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
+ doublereal *s, doublereal *rcond, integer *rank, doublecomplex *work,
+ integer *lwork, doublereal *rwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
+ doublereal d__1;
+
+ /* Local variables */
+ integer i__, bl, ie, il, mm;
+ doublereal eps, thr, anrm, bnrm;
+ integer itau;
+ doublecomplex vdum[1];
+ integer iascl, ibscl, chunk;
+ doublereal sfmin;
+ integer minmn;
+ extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, doublecomplex *,
+ integer *);
+ integer maxmn, itaup, itauq, mnthr;
+ extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *);
+ integer iwork;
+ extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlaset_(char *, integer *, integer
+ *, doublereal *, doublereal *, doublereal *, integer *),
+ xerbla_(char *, integer *), zgebrd_(integer *, integer *,
+ doublecomplex *, integer *, doublereal *, doublereal *,
+ doublecomplex *, doublecomplex *, doublecomplex *, integer *,
+ integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
+ integer *, doublereal *);
+ doublereal bignum;
+ extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *, integer *
+), zlascl_(char *, integer *, integer *, doublereal *, doublereal
+ *, integer *, integer *, doublecomplex *, integer *, integer *), zgeqrf_(integer *, integer *, doublecomplex *, integer *,
+ doublecomplex *, doublecomplex *, integer *, integer *), zdrscl_(
+ integer *, doublereal *, doublecomplex *, integer *);
+ integer ldwork;
+ extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *),
+ zlaset_(char *, integer *, integer *, doublecomplex *,
+ doublecomplex *, doublecomplex *, integer *), zbdsqr_(
+ char *, integer *, integer *, integer *, integer *, doublereal *,
+ doublereal *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, integer *, doublereal *, integer *);
+ integer minwrk, maxwrk;
+ extern /* Subroutine */ int zungbr_(char *, integer *, integer *, integer
+ *, doublecomplex *, integer *, doublecomplex *, doublecomplex *,
+ integer *, integer *);
+ doublereal smlnum;
+ integer irwork;
+ extern /* Subroutine */ int zunmbr_(char *, char *, char *, integer *,
+ integer *, integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *
+);
+ logical lquery;
+ extern /* Subroutine */ int zunmlq_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZGELSS computes the minimum norm solution to a complex linear */
+/* least squares problem: */
+
+/* Minimize 2-norm(| b - A*x |). */
+
+/* using the singular value decomposition (SVD) of A. A is an M-by-N */
+/* matrix which may be rank-deficient. */
+
+/* Several right hand side vectors b and solution vectors x can be */
+/* handled in a single call; they are stored as the columns of the */
+/* M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
+/* X. */
+
+/* The effective rank of A is determined by treating as zero those */
+/* singular values which are less than RCOND times the largest singular */
+/* value. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices B and X. NRHS >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the M-by-N matrix A. */
+/* On exit, the first min(m,n) rows of A are overwritten with */
+/* its right singular vectors, stored rowwise. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* On entry, the M-by-NRHS right hand side matrix B. */
+/* On exit, B is overwritten by the N-by-NRHS solution matrix X. */
+/* If m >= n and RANK = n, the residual sum-of-squares for */
+/* the solution in the i-th column is given by the sum of */
+/* squares of the modulus of elements n+1:m in that column. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,M,N). */
+
+/* S (output) DOUBLE PRECISION array, dimension (min(M,N)) */
+/* The singular values of A in decreasing order. */
+/* The condition number of A in the 2-norm = S(1)/S(min(m,n)). */
+
+/* RCOND (input) DOUBLE PRECISION */
+/* RCOND is used to determine the effective rank of A. */
+/* Singular values S(i) <= RCOND*S(1) are treated as zero. */
+/* If RCOND < 0, machine precision is used instead. */
+
+/* RANK (output) INTEGER */
+/* The effective rank of A, i.e., the number of singular values */
+/* which are greater than RCOND*S(1). */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= 1, and also: */
+/* LWORK >= 2*min(M,N) + max(M,N,NRHS) */
+/* For good performance, LWORK should generally be larger. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (5*min(M,N)) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: the algorithm for computing the SVD failed to converge; */
+/* if INFO = i, i off-diagonal elements of an intermediate */
+/* bidiagonal form did not converge to zero. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --s;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ *info = 0;
+ minmn = min(*m,*n);
+ maxmn = max(*m,*n);
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if (*ldb < max(1,maxmn)) {
+ *info = -7;
+ }
+
+/* Compute workspace */
+/* (Note: Comments in the code beginning "Workspace:" describe the */
+/* minimal amount of workspace needed at that point in the code, */
+/* as well as the preferred amount for good performance. */
+/* CWorkspace refers to complex workspace, and RWorkspace refers */
+/* to real workspace. NB refers to the optimal block size for the */
+/* immediately following subroutine, as returned by ILAENV.) */
+
+ if (*info == 0) {
+ minwrk = 1;
+ maxwrk = 1;
+ if (minmn > 0) {
+ mm = *m;
+ mnthr = ilaenv_(&c__6, "ZGELSS", " ", m, n, nrhs, &c_n1);
+ if (*m >= *n && *m >= mnthr) {
+
+/* Path 1a - overdetermined, with many more rows than */
+/* columns */
+
+ mm = *n;
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "ZGEQRF",
+ " ", m, n, &c_n1, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "ZUNMQR",
+ "LC", m, nrhs, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+ }
+ if (*m >= *n) {
+
+/* Path 1 - overdetermined or exactly determined */
+
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1,
+ "ZGEBRD", " ", &mm, n, &c_n1, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1,
+ "ZUNMBR", "QLC", &mm, nrhs, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
+ "ZUNGBR", "P", n, n, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * *nrhs;
+ maxwrk = max(i__1,i__2);
+ minwrk = (*n << 1) + max(*nrhs,*m);
+ }
+ if (*n > *m) {
+ minwrk = (*m << 1) + max(*nrhs,*n);
+ if (*n >= mnthr) {
+
+/* Path 2a - underdetermined, with many more columns */
+/* than rows */
+
+ maxwrk = *m + *m * ilaenv_(&c__1, "ZGELQF", " ", m, n, &
+ c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * 3 + *m * *m + (*m << 1) *
+ ilaenv_(&c__1, "ZGEBRD", " ", m, m, &c_n1, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * 3 + *m * *m + *nrhs * ilaenv_(&
+ c__1, "ZUNMBR", "QLC", m, nrhs, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * 3 + *m * *m + (*m - 1) *
+ ilaenv_(&c__1, "ZUNGBR", "P", m, m, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+ if (*nrhs > 1) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
+ maxwrk = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
+ maxwrk = max(i__1,i__2);
+ }
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "ZUNMLQ"
+, "LC", n, nrhs, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+ } else {
+
+/* Path 2 - underdetermined */
+
+ maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "ZGEBRD",
+ " ", m, n, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1,
+ "ZUNMBR", "QLC", m, nrhs, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1,
+ "ZUNGBR", "P", m, n, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * *nrhs;
+ maxwrk = max(i__1,i__2);
+ }
+ }
+ maxwrk = max(minwrk,maxwrk);
+ }
+ work[1].r = (doublereal) maxwrk, work[1].i = 0.;
+
+ if (*lwork < minwrk && ! lquery) {
+ *info = -12;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZGELSS", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ *rank = 0;
+ return 0;
+ }
+
+/* Get machine parameters */
+
+ eps = dlamch_("P");
+ sfmin = dlamch_("S");
+ smlnum = sfmin / eps;
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
+ iascl = 0;
+ if (anrm > 0. && anrm < smlnum) {
+
+/* Scale matrix norm up to SMLNUM */
+
+ zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 1;
+ } else if (anrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM */
+
+ zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 2;
+ } else if (anrm == 0.) {
+
+/* Matrix all zero. Return zero solution. */
+
+ i__1 = max(*m,*n);
+ zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
+ dlaset_("F", &minmn, &c__1, &c_b78, &c_b78, &s[1], &minmn);
+ *rank = 0;
+ goto L70;
+ }
+
+/* Scale B if max element outside range [SMLNUM,BIGNUM] */
+
+ bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
+ ibscl = 0;
+ if (bnrm > 0. && bnrm < smlnum) {
+
+/* Scale matrix norm up to SMLNUM */
+
+ zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
+ info);
+ ibscl = 1;
+ } else if (bnrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM */
+
+ zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
+ info);
+ ibscl = 2;
+ }
+
+/* Overdetermined case */
+
+ if (*m >= *n) {
+
+/* Path 1 - overdetermined or exactly determined */
+
+ mm = *m;
+ if (*m >= mnthr) {
+
+/* Path 1a - overdetermined, with many more rows than columns */
+
+ mm = *n;
+ itau = 1;
+ iwork = itau + *n;
+
+/* Compute A=Q*R */
+/* (CWorkspace: need 2*N, prefer N+N*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwork + 1;
+ zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
+ info);
+
+/* Multiply B by transpose(Q) */
+/* (CWorkspace: need N+NRHS, prefer N+NRHS*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwork + 1;
+ zunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
+ b_offset], ldb, &work[iwork], &i__1, info);
+
+/* Zero out below R */
+
+ if (*n > 1) {
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
+ }
+ }
+
+ ie = 1;
+ itauq = 1;
+ itaup = itauq + *n;
+ iwork = itaup + *n;
+
+/* Bidiagonalize R in A */
+/* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
+/* (RWorkspace: need N) */
+
+ i__1 = *lwork - iwork + 1;
+ zgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
+ work[itaup], &work[iwork], &i__1, info);
+
+/* Multiply B by transpose of left bidiagonalizing vectors of R */
+/* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwork + 1;
+ zunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
+ &b[b_offset], ldb, &work[iwork], &i__1, info);
+
+/* Generate right bidiagonalizing vectors of R in A */
+/* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwork + 1;
+ zungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
+ i__1, info);
+ irwork = ie + *n;
+
+/* Perform bidiagonal QR iteration */
+/* multiply B by transpose of left singular vectors */
+/* compute right singular vectors in A */
+/* (CWorkspace: none) */
+/* (RWorkspace: need BDSPAC) */
+
+ zbdsqr_("U", n, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda,
+ vdum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
+ if (*info != 0) {
+ goto L70;
+ }
+
+/* Multiply B by reciprocals of singular values */
+
+/* Computing MAX */
+ d__1 = *rcond * s[1];
+ thr = max(d__1,sfmin);
+ if (*rcond < 0.) {
+/* Computing MAX */
+ d__1 = eps * s[1];
+ thr = max(d__1,sfmin);
+ }
+ *rank = 0;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (s[i__] > thr) {
+ zdrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
+ ++(*rank);
+ } else {
+ zlaset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
+ }
+/* L10: */
+ }
+
+/* Multiply B by right singular vectors */
+/* (CWorkspace: need N, prefer N*NRHS) */
+/* (RWorkspace: none) */
+
+ if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
+ zgemm_("C", "N", n, nrhs, n, &c_b2, &a[a_offset], lda, &b[
+ b_offset], ldb, &c_b1, &work[1], ldb);
+ zlacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
+ ;
+ } else if (*nrhs > 1) {
+ chunk = *lwork / *n;
+ i__1 = *nrhs;
+ i__2 = chunk;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__3 = *nrhs - i__ + 1;
+ bl = min(i__3,chunk);
+ zgemm_("C", "N", n, &bl, n, &c_b2, &a[a_offset], lda, &b[i__ *
+ b_dim1 + 1], ldb, &c_b1, &work[1], n);
+ zlacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
+/* L20: */
+ }
+ } else {
+ zgemv_("C", n, n, &c_b2, &a[a_offset], lda, &b[b_offset], &c__1, &
+ c_b1, &work[1], &c__1);
+ zcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
+ }
+
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__2 = max(*m,*nrhs), i__1 = *n - (*m << 1);
+ if (*n >= mnthr && *lwork >= *m * 3 + *m * *m + max(i__2,i__1)) {
+
+/* Underdetermined case, M much less than N */
+
+/* Path 2a - underdetermined, with many more columns than rows */
+/* and sufficient workspace for an efficient algorithm */
+
+ ldwork = *m;
+/* Computing MAX */
+ i__2 = max(*m,*nrhs), i__1 = *n - (*m << 1);
+ if (*lwork >= *m * 3 + *m * *lda + max(i__2,i__1)) {
+ ldwork = *lda;
+ }
+ itau = 1;
+ iwork = *m + 1;
+
+/* Compute A=L*Q */
+/* (CWorkspace: need 2*M, prefer M+M*NB) */
+/* (RWorkspace: none) */
+
+ i__2 = *lwork - iwork + 1;
+ zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
+ info);
+ il = iwork;
+
+/* Copy L to WORK(IL), zeroing out above it */
+
+ zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
+ i__2 = *m - 1;
+ i__1 = *m - 1;
+ zlaset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwork], &
+ ldwork);
+ ie = 1;
+ itauq = il + ldwork * *m;
+ itaup = itauq + *m;
+ iwork = itaup + *m;
+
+/* Bidiagonalize L in WORK(IL) */
+/* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
+/* (RWorkspace: need M) */
+
+ i__2 = *lwork - iwork + 1;
+ zgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
+ &work[itaup], &work[iwork], &i__2, info);
+
+/* Multiply B by transpose of left bidiagonalizing vectors of L */
+/* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB) */
+/* (RWorkspace: none) */
+
+ i__2 = *lwork - iwork + 1;
+ zunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
+ itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
+
+/* Generate right bidiagonalizing vectors of R in WORK(IL) */
+/* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */
+/* (RWorkspace: none) */
+
+ i__2 = *lwork - iwork + 1;
+ zungbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
+ iwork], &i__2, info);
+ irwork = ie + *m;
+
+/* Perform bidiagonal QR iteration, computing right singular */
+/* vectors of L in WORK(IL) and multiplying B by transpose of */
+/* left singular vectors */
+/* (CWorkspace: need M*M) */
+/* (RWorkspace: need BDSPAC) */
+
+ zbdsqr_("U", m, m, &c__0, nrhs, &s[1], &rwork[ie], &work[il], &
+ ldwork, &a[a_offset], lda, &b[b_offset], ldb, &rwork[
+ irwork], info);
+ if (*info != 0) {
+ goto L70;
+ }
+
+/* Multiply B by reciprocals of singular values */
+
+/* Computing MAX */
+ d__1 = *rcond * s[1];
+ thr = max(d__1,sfmin);
+ if (*rcond < 0.) {
+/* Computing MAX */
+ d__1 = eps * s[1];
+ thr = max(d__1,sfmin);
+ }
+ *rank = 0;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (s[i__] > thr) {
+ zdrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
+ ++(*rank);
+ } else {
+ zlaset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
+ ldb);
+ }
+/* L30: */
+ }
+ iwork = il + *m * ldwork;
+
+/* Multiply B by right singular vectors of L in WORK(IL) */
+/* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
+/* (RWorkspace: none) */
+
+ if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
+ zgemm_("C", "N", m, nrhs, m, &c_b2, &work[il], &ldwork, &b[
+ b_offset], ldb, &c_b1, &work[iwork], ldb);
+ zlacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
+ } else if (*nrhs > 1) {
+ chunk = (*lwork - iwork + 1) / *m;
+ i__2 = *nrhs;
+ i__1 = chunk;
+ for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
+ i__1) {
+/* Computing MIN */
+ i__3 = *nrhs - i__ + 1;
+ bl = min(i__3,chunk);
+ zgemm_("C", "N", m, &bl, m, &c_b2, &work[il], &ldwork, &b[
+ i__ * b_dim1 + 1], ldb, &c_b1, &work[iwork], m);
+ zlacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
+, ldb);
+/* L40: */
+ }
+ } else {
+ zgemv_("C", m, m, &c_b2, &work[il], &ldwork, &b[b_dim1 + 1], &
+ c__1, &c_b1, &work[iwork], &c__1);
+ zcopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
+ }
+
+/* Zero out below first M rows of B */
+
+ i__1 = *n - *m;
+ zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
+ iwork = itau + *m;
+
+/* Multiply transpose(Q) by B */
+/* (CWorkspace: need M+NRHS, prefer M+NHRS*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwork + 1;
+ zunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
+ b_offset], ldb, &work[iwork], &i__1, info);
+
+ } else {
+
+/* Path 2 - remaining underdetermined cases */
+
+ ie = 1;
+ itauq = 1;
+ itaup = itauq + *m;
+ iwork = itaup + *m;
+
+/* Bidiagonalize A */
+/* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB) */
+/* (RWorkspace: need N) */
+
+ i__1 = *lwork - iwork + 1;
+ zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
+ &work[itaup], &work[iwork], &i__1, info);
+
+/* Multiply B by transpose of left bidiagonalizing vectors */
+/* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwork + 1;
+ zunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
+, &b[b_offset], ldb, &work[iwork], &i__1, info);
+
+/* Generate right bidiagonalizing vectors in A */
+/* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwork + 1;
+ zungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
+ iwork], &i__1, info);
+ irwork = ie + *m;
+
+/* Perform bidiagonal QR iteration, */
+/* computing right singular vectors of A in A and */
+/* multiplying B by transpose of left singular vectors */
+/* (CWorkspace: none) */
+/* (RWorkspace: need BDSPAC) */
+
+ zbdsqr_("L", m, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset],
+ lda, vdum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
+ if (*info != 0) {
+ goto L70;
+ }
+
+/* Multiply B by reciprocals of singular values */
+
+/* Computing MAX */
+ d__1 = *rcond * s[1];
+ thr = max(d__1,sfmin);
+ if (*rcond < 0.) {
+/* Computing MAX */
+ d__1 = eps * s[1];
+ thr = max(d__1,sfmin);
+ }
+ *rank = 0;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (s[i__] > thr) {
+ zdrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
+ ++(*rank);
+ } else {
+ zlaset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
+ ldb);
+ }
+/* L50: */
+ }
+
+/* Multiply B by right singular vectors of A */
+/* (CWorkspace: need N, prefer N*NRHS) */
+/* (RWorkspace: none) */
+
+ if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
+ zgemm_("C", "N", n, nrhs, m, &c_b2, &a[a_offset], lda, &b[
+ b_offset], ldb, &c_b1, &work[1], ldb);
+ zlacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
+ } else if (*nrhs > 1) {
+ chunk = *lwork / *n;
+ i__1 = *nrhs;
+ i__2 = chunk;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
+ i__2) {
+/* Computing MIN */
+ i__3 = *nrhs - i__ + 1;
+ bl = min(i__3,chunk);
+ zgemm_("C", "N", n, &bl, m, &c_b2, &a[a_offset], lda, &b[
+ i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n);
+ zlacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
+ ldb);
+/* L60: */
+ }
+ } else {
+ zgemv_("C", m, n, &c_b2, &a[a_offset], lda, &b[b_offset], &
+ c__1, &c_b1, &work[1], &c__1);
+ zcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
+ }
+ }
+ }
+
+/* Undo scaling */
+
+ if (iascl == 1) {
+ zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
+ info);
+ dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, info);
+ } else if (iascl == 2) {
+ zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
+ info);
+ dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, info);
+ }
+ if (ibscl == 1) {
+ zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
+ info);
+ } else if (ibscl == 2) {
+ zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
+ info);
+ }
+L70:
+ work[1].r = (doublereal) maxwrk, work[1].i = 0.;
+ return 0;
+
+/* End of ZGELSS */
+
+} /* zgelss_ */