aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgels.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgels.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgels.c')
-rw-r--r--contrib/libs/clapack/zgels.c520
1 files changed, 520 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgels.c b/contrib/libs/clapack/zgels.c
new file mode 100644
index 0000000000..dac9e32265
--- /dev/null
+++ b/contrib/libs/clapack/zgels.c
@@ -0,0 +1,520 @@
+/* zgels.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {0.,0.};
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static integer c__0 = 0;
+
+/* Subroutine */ int zgels_(char *trans, integer *m, integer *n, integer *
+ nrhs, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
+ doublecomplex *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
+ doublereal d__1;
+
+ /* Local variables */
+ integer i__, j, nb, mn;
+ doublereal anrm, bnrm;
+ integer brow;
+ logical tpsd;
+ integer iascl, ibscl;
+ extern logical lsame_(char *, char *);
+ integer wsize;
+ doublereal rwork[1];
+ extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ integer scllen;
+ doublereal bignum;
+ extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
+ integer *, doublereal *);
+ extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *, integer *
+), zlascl_(char *, integer *, integer *, doublereal *, doublereal
+ *, integer *, integer *, doublecomplex *, integer *, integer *), zgeqrf_(integer *, integer *, doublecomplex *, integer *,
+ doublecomplex *, doublecomplex *, integer *, integer *), zlaset_(
+ char *, integer *, integer *, doublecomplex *, doublecomplex *,
+ doublecomplex *, integer *);
+ doublereal smlnum;
+ logical lquery;
+ extern /* Subroutine */ int zunmlq_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *), ztrtrs_(char *, char *, char *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *, integer *,
+ integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZGELS solves overdetermined or underdetermined complex linear systems */
+/* involving an M-by-N matrix A, or its conjugate-transpose, using a QR */
+/* or LQ factorization of A. It is assumed that A has full rank. */
+
+/* The following options are provided: */
+
+/* 1. If TRANS = 'N' and m >= n: find the least squares solution of */
+/* an overdetermined system, i.e., solve the least squares problem */
+/* minimize || B - A*X ||. */
+
+/* 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
+/* an underdetermined system A * X = B. */
+
+/* 3. If TRANS = 'C' and m >= n: find the minimum norm solution of */
+/* an undetermined system A**H * X = B. */
+
+/* 4. If TRANS = 'C' and m < n: find the least squares solution of */
+/* an overdetermined system, i.e., solve the least squares problem */
+/* minimize || B - A**H * X ||. */
+
+/* Several right hand side vectors b and solution vectors x can be */
+/* handled in a single call; they are stored as the columns of the */
+/* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
+/* matrix X. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANS (input) CHARACTER*1 */
+/* = 'N': the linear system involves A; */
+/* = 'C': the linear system involves A**H. */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of */
+/* columns of the matrices B and X. NRHS >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the M-by-N matrix A. */
+/* if M >= N, A is overwritten by details of its QR */
+/* factorization as returned by ZGEQRF; */
+/* if M < N, A is overwritten by details of its LQ */
+/* factorization as returned by ZGELQF. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* On entry, the matrix B of right hand side vectors, stored */
+/* columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
+/* if TRANS = 'C'. */
+/* On exit, if INFO = 0, B is overwritten by the solution */
+/* vectors, stored columnwise: */
+/* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
+/* squares solution vectors; the residual sum of squares for the */
+/* solution in each column is given by the sum of squares of the */
+/* modulus of elements N+1 to M in that column; */
+/* if TRANS = 'N' and m < n, rows 1 to N of B contain the */
+/* minimum norm solution vectors; */
+/* if TRANS = 'C' and m >= n, rows 1 to M of B contain the */
+/* minimum norm solution vectors; */
+/* if TRANS = 'C' and m < n, rows 1 to M of B contain the */
+/* least squares solution vectors; the residual sum of squares */
+/* for the solution in each column is given by the sum of */
+/* squares of the modulus of elements M+1 to N in that column. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= MAX(1,M,N). */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* LWORK >= max( 1, MN + max( MN, NRHS ) ). */
+/* For optimal performance, */
+/* LWORK >= max( 1, MN + max( MN, NRHS )*NB ). */
+/* where MN = min(M,N) and NB is the optimum block size. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, the i-th diagonal element of the */
+/* triangular factor of A is zero, so that A does not have */
+/* full rank; the least squares solution could not be */
+/* computed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ mn = min(*m,*n);
+ lquery = *lwork == -1;
+ if (! (lsame_(trans, "N") || lsame_(trans, "C"))) {
+ *info = -1;
+ } else if (*m < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*nrhs < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*m)) {
+ *info = -6;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = max(1,*m);
+ if (*ldb < max(i__1,*n)) {
+ *info = -8;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = 1, i__2 = mn + max(mn,*nrhs);
+ if (*lwork < max(i__1,i__2) && ! lquery) {
+ *info = -10;
+ }
+ }
+ }
+
+/* Figure out optimal block size */
+
+ if (*info == 0 || *info == -10) {
+
+ tpsd = TRUE_;
+ if (lsame_(trans, "N")) {
+ tpsd = FALSE_;
+ }
+
+ if (*m >= *n) {
+ nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
+ if (tpsd) {
+/* Computing MAX */
+ i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMQR", "LN", m, nrhs, n, &
+ c_n1);
+ nb = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMQR", "LC", m, nrhs, n, &
+ c_n1);
+ nb = max(i__1,i__2);
+ }
+ } else {
+ nb = ilaenv_(&c__1, "ZGELQF", " ", m, n, &c_n1, &c_n1);
+ if (tpsd) {
+/* Computing MAX */
+ i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMLQ", "LC", n, nrhs, m, &
+ c_n1);
+ nb = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMLQ", "LN", n, nrhs, m, &
+ c_n1);
+ nb = max(i__1,i__2);
+ }
+ }
+
+/* Computing MAX */
+ i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb;
+ wsize = max(i__1,i__2);
+ d__1 = (doublereal) wsize;
+ work[1].r = d__1, work[1].i = 0.;
+
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZGELS ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+/* Computing MIN */
+ i__1 = min(*m,*n);
+ if (min(i__1,*nrhs) == 0) {
+ i__1 = max(*m,*n);
+ zlaset_("Full", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
+ return 0;
+ }
+
+/* Get machine parameters */
+
+ smlnum = dlamch_("S") / dlamch_("P");
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+
+/* Scale A, B if max element outside range [SMLNUM,BIGNUM] */
+
+ anrm = zlange_("M", m, n, &a[a_offset], lda, rwork);
+ iascl = 0;
+ if (anrm > 0. && anrm < smlnum) {
+
+/* Scale matrix norm up to SMLNUM */
+
+ zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 1;
+ } else if (anrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM */
+
+ zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 2;
+ } else if (anrm == 0.) {
+
+/* Matrix all zero. Return zero solution. */
+
+ i__1 = max(*m,*n);
+ zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
+ goto L50;
+ }
+
+ brow = *m;
+ if (tpsd) {
+ brow = *n;
+ }
+ bnrm = zlange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
+ ibscl = 0;
+ if (bnrm > 0. && bnrm < smlnum) {
+
+/* Scale matrix norm up to SMLNUM */
+
+ zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
+ ldb, info);
+ ibscl = 1;
+ } else if (bnrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM */
+
+ zlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
+ ldb, info);
+ ibscl = 2;
+ }
+
+ if (*m >= *n) {
+
+/* compute QR factorization of A */
+
+ i__1 = *lwork - mn;
+ zgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
+ ;
+
+/* workspace at least N, optimally N*NB */
+
+ if (! tpsd) {
+
+/* Least-Squares Problem min || A * X - B || */
+
+/* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */
+
+ i__1 = *lwork - mn;
+ zunmqr_("Left", "Conjugate transpose", m, nrhs, n, &a[a_offset],
+ lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1,
+ info);
+
+/* workspace at least NRHS, optimally NRHS*NB */
+
+/* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
+
+ ztrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
+, lda, &b[b_offset], ldb, info);
+
+ if (*info > 0) {
+ return 0;
+ }
+
+ scllen = *n;
+
+ } else {
+
+/* Overdetermined system of equations A' * X = B */
+
+/* B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */
+
+ ztrtrs_("Upper", "Conjugate transpose", "Non-unit", n, nrhs, &a[
+ a_offset], lda, &b[b_offset], ldb, info);
+
+ if (*info > 0) {
+ return 0;
+ }
+
+/* B(N+1:M,1:NRHS) = ZERO */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = *n + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = 0., b[i__3].i = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+
+/* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */
+
+ i__1 = *lwork - mn;
+ zunmqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &
+ work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
+
+/* workspace at least NRHS, optimally NRHS*NB */
+
+ scllen = *m;
+
+ }
+
+ } else {
+
+/* Compute LQ factorization of A */
+
+ i__1 = *lwork - mn;
+ zgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
+ ;
+
+/* workspace at least M, optimally M*NB. */
+
+ if (! tpsd) {
+
+/* underdetermined system of equations A * X = B */
+
+/* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
+
+ ztrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
+, lda, &b[b_offset], ldb, info);
+
+ if (*info > 0) {
+ return 0;
+ }
+
+/* B(M+1:N,1:NRHS) = 0 */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = *m + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ b[i__3].r = 0., b[i__3].i = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+
+/* B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */
+
+ i__1 = *lwork - mn;
+ zunmlq_("Left", "Conjugate transpose", n, nrhs, m, &a[a_offset],
+ lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1,
+ info);
+
+/* workspace at least NRHS, optimally NRHS*NB */
+
+ scllen = *n;
+
+ } else {
+
+/* overdetermined system min || A' * X - B || */
+
+/* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */
+
+ i__1 = *lwork - mn;
+ zunmlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &
+ work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
+
+/* workspace at least NRHS, optimally NRHS*NB */
+
+/* B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */
+
+ ztrtrs_("Lower", "Conjugate transpose", "Non-unit", m, nrhs, &a[
+ a_offset], lda, &b[b_offset], ldb, info);
+
+ if (*info > 0) {
+ return 0;
+ }
+
+ scllen = *m;
+
+ }
+
+ }
+
+/* Undo scaling */
+
+ if (iascl == 1) {
+ zlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
+, ldb, info);
+ } else if (iascl == 2) {
+ zlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
+, ldb, info);
+ }
+ if (ibscl == 1) {
+ zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
+, ldb, info);
+ } else if (ibscl == 2) {
+ zlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
+, ldb, info);
+ }
+
+L50:
+ d__1 = (doublereal) wsize;
+ work[1].r = d__1, work[1].i = 0.;
+
+ return 0;
+
+/* End of ZGELS */
+
+} /* zgels_ */