diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgels.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgels.c')
-rw-r--r-- | contrib/libs/clapack/zgels.c | 520 |
1 files changed, 520 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgels.c b/contrib/libs/clapack/zgels.c new file mode 100644 index 0000000000..dac9e32265 --- /dev/null +++ b/contrib/libs/clapack/zgels.c @@ -0,0 +1,520 @@ +/* zgels.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {0.,0.}; +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__0 = 0; + +/* Subroutine */ int zgels_(char *trans, integer *m, integer *n, integer * + nrhs, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, + doublecomplex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; + doublereal d__1; + + /* Local variables */ + integer i__, j, nb, mn; + doublereal anrm, bnrm; + integer brow; + logical tpsd; + integer iascl, ibscl; + extern logical lsame_(char *, char *); + integer wsize; + doublereal rwork[1]; + extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); + extern doublereal dlamch_(char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + integer scllen; + doublereal bignum; + extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, + integer *, doublereal *); + extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *, integer * +), zlascl_(char *, integer *, integer *, doublereal *, doublereal + *, integer *, integer *, doublecomplex *, integer *, integer *), zgeqrf_(integer *, integer *, doublecomplex *, integer *, + doublecomplex *, doublecomplex *, integer *, integer *), zlaset_( + char *, integer *, integer *, doublecomplex *, doublecomplex *, + doublecomplex *, integer *); + doublereal smlnum; + logical lquery; + extern /* Subroutine */ int zunmlq_(char *, char *, integer *, integer *, + integer *, doublecomplex *, integer *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *, + integer *, doublecomplex *, integer *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *, integer *, integer *), ztrtrs_(char *, char *, char *, integer *, + integer *, doublecomplex *, integer *, doublecomplex *, integer *, + integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZGELS solves overdetermined or underdetermined complex linear systems */ +/* involving an M-by-N matrix A, or its conjugate-transpose, using a QR */ +/* or LQ factorization of A. It is assumed that A has full rank. */ + +/* The following options are provided: */ + +/* 1. If TRANS = 'N' and m >= n: find the least squares solution of */ +/* an overdetermined system, i.e., solve the least squares problem */ +/* minimize || B - A*X ||. */ + +/* 2. If TRANS = 'N' and m < n: find the minimum norm solution of */ +/* an underdetermined system A * X = B. */ + +/* 3. If TRANS = 'C' and m >= n: find the minimum norm solution of */ +/* an undetermined system A**H * X = B. */ + +/* 4. If TRANS = 'C' and m < n: find the least squares solution of */ +/* an overdetermined system, i.e., solve the least squares problem */ +/* minimize || B - A**H * X ||. */ + +/* Several right hand side vectors b and solution vectors x can be */ +/* handled in a single call; they are stored as the columns of the */ +/* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ +/* matrix X. */ + +/* Arguments */ +/* ========= */ + +/* TRANS (input) CHARACTER*1 */ +/* = 'N': the linear system involves A; */ +/* = 'C': the linear system involves A**H. */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of */ +/* columns of the matrices B and X. NRHS >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ +/* On entry, the M-by-N matrix A. */ +/* if M >= N, A is overwritten by details of its QR */ +/* factorization as returned by ZGEQRF; */ +/* if M < N, A is overwritten by details of its LQ */ +/* factorization as returned by ZGELQF. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ +/* On entry, the matrix B of right hand side vectors, stored */ +/* columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */ +/* if TRANS = 'C'. */ +/* On exit, if INFO = 0, B is overwritten by the solution */ +/* vectors, stored columnwise: */ +/* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */ +/* squares solution vectors; the residual sum of squares for the */ +/* solution in each column is given by the sum of squares of the */ +/* modulus of elements N+1 to M in that column; */ +/* if TRANS = 'N' and m < n, rows 1 to N of B contain the */ +/* minimum norm solution vectors; */ +/* if TRANS = 'C' and m >= n, rows 1 to M of B contain the */ +/* minimum norm solution vectors; */ +/* if TRANS = 'C' and m < n, rows 1 to M of B contain the */ +/* least squares solution vectors; the residual sum of squares */ +/* for the solution in each column is given by the sum of */ +/* squares of the modulus of elements M+1 to N in that column. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= MAX(1,M,N). */ + +/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. */ +/* LWORK >= max( 1, MN + max( MN, NRHS ) ). */ +/* For optimal performance, */ +/* LWORK >= max( 1, MN + max( MN, NRHS )*NB ). */ +/* where MN = min(M,N) and NB is the optimum block size. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, the i-th diagonal element of the */ +/* triangular factor of A is zero, so that A does not have */ +/* full rank; the least squares solution could not be */ +/* computed. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --work; + + /* Function Body */ + *info = 0; + mn = min(*m,*n); + lquery = *lwork == -1; + if (! (lsame_(trans, "N") || lsame_(trans, "C"))) { + *info = -1; + } else if (*m < 0) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*nrhs < 0) { + *info = -4; + } else if (*lda < max(1,*m)) { + *info = -6; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = max(1,*m); + if (*ldb < max(i__1,*n)) { + *info = -8; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = 1, i__2 = mn + max(mn,*nrhs); + if (*lwork < max(i__1,i__2) && ! lquery) { + *info = -10; + } + } + } + +/* Figure out optimal block size */ + + if (*info == 0 || *info == -10) { + + tpsd = TRUE_; + if (lsame_(trans, "N")) { + tpsd = FALSE_; + } + + if (*m >= *n) { + nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1); + if (tpsd) { +/* Computing MAX */ + i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMQR", "LN", m, nrhs, n, & + c_n1); + nb = max(i__1,i__2); + } else { +/* Computing MAX */ + i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMQR", "LC", m, nrhs, n, & + c_n1); + nb = max(i__1,i__2); + } + } else { + nb = ilaenv_(&c__1, "ZGELQF", " ", m, n, &c_n1, &c_n1); + if (tpsd) { +/* Computing MAX */ + i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMLQ", "LC", n, nrhs, m, & + c_n1); + nb = max(i__1,i__2); + } else { +/* Computing MAX */ + i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMLQ", "LN", n, nrhs, m, & + c_n1); + nb = max(i__1,i__2); + } + } + +/* Computing MAX */ + i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb; + wsize = max(i__1,i__2); + d__1 = (doublereal) wsize; + work[1].r = d__1, work[1].i = 0.; + + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZGELS ", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + +/* Computing MIN */ + i__1 = min(*m,*n); + if (min(i__1,*nrhs) == 0) { + i__1 = max(*m,*n); + zlaset_("Full", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); + return 0; + } + +/* Get machine parameters */ + + smlnum = dlamch_("S") / dlamch_("P"); + bignum = 1. / smlnum; + dlabad_(&smlnum, &bignum); + +/* Scale A, B if max element outside range [SMLNUM,BIGNUM] */ + + anrm = zlange_("M", m, n, &a[a_offset], lda, rwork); + iascl = 0; + if (anrm > 0. && anrm < smlnum) { + +/* Scale matrix norm up to SMLNUM */ + + zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, + info); + iascl = 1; + } else if (anrm > bignum) { + +/* Scale matrix norm down to BIGNUM */ + + zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, + info); + iascl = 2; + } else if (anrm == 0.) { + +/* Matrix all zero. Return zero solution. */ + + i__1 = max(*m,*n); + zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); + goto L50; + } + + brow = *m; + if (tpsd) { + brow = *n; + } + bnrm = zlange_("M", &brow, nrhs, &b[b_offset], ldb, rwork); + ibscl = 0; + if (bnrm > 0. && bnrm < smlnum) { + +/* Scale matrix norm up to SMLNUM */ + + zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset], + ldb, info); + ibscl = 1; + } else if (bnrm > bignum) { + +/* Scale matrix norm down to BIGNUM */ + + zlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset], + ldb, info); + ibscl = 2; + } + + if (*m >= *n) { + +/* compute QR factorization of A */ + + i__1 = *lwork - mn; + zgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info) + ; + +/* workspace at least N, optimally N*NB */ + + if (! tpsd) { + +/* Least-Squares Problem min || A * X - B || */ + +/* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */ + + i__1 = *lwork - mn; + zunmqr_("Left", "Conjugate transpose", m, nrhs, n, &a[a_offset], + lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, + info); + +/* workspace at least NRHS, optimally NRHS*NB */ + +/* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */ + + ztrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset] +, lda, &b[b_offset], ldb, info); + + if (*info > 0) { + return 0; + } + + scllen = *n; + + } else { + +/* Overdetermined system of equations A' * X = B */ + +/* B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */ + + ztrtrs_("Upper", "Conjugate transpose", "Non-unit", n, nrhs, &a[ + a_offset], lda, &b[b_offset], ldb, info); + + if (*info > 0) { + return 0; + } + +/* B(N+1:M,1:NRHS) = ZERO */ + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = *n + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0., b[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + +/* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */ + + i__1 = *lwork - mn; + zunmqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, & + work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); + +/* workspace at least NRHS, optimally NRHS*NB */ + + scllen = *m; + + } + + } else { + +/* Compute LQ factorization of A */ + + i__1 = *lwork - mn; + zgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info) + ; + +/* workspace at least M, optimally M*NB. */ + + if (! tpsd) { + +/* underdetermined system of equations A * X = B */ + +/* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */ + + ztrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset] +, lda, &b[b_offset], ldb, info); + + if (*info > 0) { + return 0; + } + +/* B(M+1:N,1:NRHS) = 0 */ + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = *m + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0., b[i__3].i = 0.; +/* L30: */ + } +/* L40: */ + } + +/* B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */ + + i__1 = *lwork - mn; + zunmlq_("Left", "Conjugate transpose", n, nrhs, m, &a[a_offset], + lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, + info); + +/* workspace at least NRHS, optimally NRHS*NB */ + + scllen = *n; + + } else { + +/* overdetermined system min || A' * X - B || */ + +/* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */ + + i__1 = *lwork - mn; + zunmlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, & + work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); + +/* workspace at least NRHS, optimally NRHS*NB */ + +/* B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */ + + ztrtrs_("Lower", "Conjugate transpose", "Non-unit", m, nrhs, &a[ + a_offset], lda, &b[b_offset], ldb, info); + + if (*info > 0) { + return 0; + } + + scllen = *m; + + } + + } + +/* Undo scaling */ + + if (iascl == 1) { + zlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset] +, ldb, info); + } else if (iascl == 2) { + zlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset] +, ldb, info); + } + if (ibscl == 1) { + zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset] +, ldb, info); + } else if (ibscl == 2) { + zlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset] +, ldb, info); + } + +L50: + d__1 = (doublereal) wsize; + work[1].r = d__1, work[1].i = 0.; + + return 0; + +/* End of ZGELS */ + +} /* zgels_ */ |