aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgeevx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgeevx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgeevx.c')
-rw-r--r--contrib/libs/clapack/zgeevx.c686
1 files changed, 686 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgeevx.c b/contrib/libs/clapack/zgeevx.c
new file mode 100644
index 0000000000..3b3fbdf505
--- /dev/null
+++ b/contrib/libs/clapack/zgeevx.c
@@ -0,0 +1,686 @@
+/* zgeevx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c__0 = 0;
+static integer c_n1 = -1;
+
+/* Subroutine */ int zgeevx_(char *balanc, char *jobvl, char *jobvr, char *
+ sense, integer *n, doublecomplex *a, integer *lda, doublecomplex *w,
+ doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr,
+ integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm,
+ doublereal *rconde, doublereal *rcondv, doublecomplex *work, integer *
+ lwork, doublereal *rwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
+ i__2, i__3;
+ doublereal d__1, d__2;
+ doublecomplex z__1, z__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_imag(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__, k;
+ char job[1];
+ doublereal scl, dum[1], eps;
+ doublecomplex tmp;
+ char side[1];
+ doublereal anrm;
+ integer ierr, itau, iwrk, nout, icond;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
+ doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
+ extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
+ logical scalea;
+ extern doublereal dlamch_(char *);
+ doublereal cscale;
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), zgebak_(char *, char *, integer *,
+ integer *, integer *, doublereal *, integer *, doublecomplex *,
+ integer *, integer *), zgebal_(char *, integer *,
+ doublecomplex *, integer *, integer *, integer *, doublereal *,
+ integer *);
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ logical select[1];
+ extern /* Subroutine */ int zdscal_(integer *, doublereal *,
+ doublecomplex *, integer *);
+ doublereal bignum;
+ extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
+ integer *, doublereal *);
+ extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, doublecomplex *,
+ integer *, integer *), zlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublecomplex *,
+ integer *, integer *), zlacpy_(char *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *, integer *);
+ integer minwrk, maxwrk;
+ logical wantvl, wntsnb;
+ integer hswork;
+ logical wntsne;
+ doublereal smlnum;
+ extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *);
+ logical lquery, wantvr;
+ extern /* Subroutine */ int ztrevc_(char *, char *, logical *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, integer *, integer *, doublecomplex *,
+ doublereal *, integer *), ztrsna_(char *, char *,
+ logical *, integer *, doublecomplex *, integer *, doublecomplex *
+, integer *, doublecomplex *, integer *, doublereal *, doublereal
+ *, integer *, integer *, doublecomplex *, integer *, doublereal *,
+ integer *), zunghr_(integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, integer *);
+ logical wntsnn, wntsnv;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
+/* eigenvalues and, optionally, the left and/or right eigenvectors. */
+
+/* Optionally also, it computes a balancing transformation to improve */
+/* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
+/* SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
+/* (RCONDE), and reciprocal condition numbers for the right */
+/* eigenvectors (RCONDV). */
+
+/* The right eigenvector v(j) of A satisfies */
+/* A * v(j) = lambda(j) * v(j) */
+/* where lambda(j) is its eigenvalue. */
+/* The left eigenvector u(j) of A satisfies */
+/* u(j)**H * A = lambda(j) * u(j)**H */
+/* where u(j)**H denotes the conjugate transpose of u(j). */
+
+/* The computed eigenvectors are normalized to have Euclidean norm */
+/* equal to 1 and largest component real. */
+
+/* Balancing a matrix means permuting the rows and columns to make it */
+/* more nearly upper triangular, and applying a diagonal similarity */
+/* transformation D * A * D**(-1), where D is a diagonal matrix, to */
+/* make its rows and columns closer in norm and the condition numbers */
+/* of its eigenvalues and eigenvectors smaller. The computed */
+/* reciprocal condition numbers correspond to the balanced matrix. */
+/* Permuting rows and columns will not change the condition numbers */
+/* (in exact arithmetic) but diagonal scaling will. For further */
+/* explanation of balancing, see section 4.10.2 of the LAPACK */
+/* Users' Guide. */
+
+/* Arguments */
+/* ========= */
+
+/* BALANC (input) CHARACTER*1 */
+/* Indicates how the input matrix should be diagonally scaled */
+/* and/or permuted to improve the conditioning of its */
+/* eigenvalues. */
+/* = 'N': Do not diagonally scale or permute; */
+/* = 'P': Perform permutations to make the matrix more nearly */
+/* upper triangular. Do not diagonally scale; */
+/* = 'S': Diagonally scale the matrix, ie. replace A by */
+/* D*A*D**(-1), where D is a diagonal matrix chosen */
+/* to make the rows and columns of A more equal in */
+/* norm. Do not permute; */
+/* = 'B': Both diagonally scale and permute A. */
+
+/* Computed reciprocal condition numbers will be for the matrix */
+/* after balancing and/or permuting. Permuting does not change */
+/* condition numbers (in exact arithmetic), but balancing does. */
+
+/* JOBVL (input) CHARACTER*1 */
+/* = 'N': left eigenvectors of A are not computed; */
+/* = 'V': left eigenvectors of A are computed. */
+/* If SENSE = 'E' or 'B', JOBVL must = 'V'. */
+
+/* JOBVR (input) CHARACTER*1 */
+/* = 'N': right eigenvectors of A are not computed; */
+/* = 'V': right eigenvectors of A are computed. */
+/* If SENSE = 'E' or 'B', JOBVR must = 'V'. */
+
+/* SENSE (input) CHARACTER*1 */
+/* Determines which reciprocal condition numbers are computed. */
+/* = 'N': None are computed; */
+/* = 'E': Computed for eigenvalues only; */
+/* = 'V': Computed for right eigenvectors only; */
+/* = 'B': Computed for eigenvalues and right eigenvectors. */
+
+/* If SENSE = 'E' or 'B', both left and right eigenvectors */
+/* must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the N-by-N matrix A. */
+/* On exit, A has been overwritten. If JOBVL = 'V' or */
+/* JOBVR = 'V', A contains the Schur form of the balanced */
+/* version of the matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* W (output) COMPLEX*16 array, dimension (N) */
+/* W contains the computed eigenvalues. */
+
+/* VL (output) COMPLEX*16 array, dimension (LDVL,N) */
+/* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
+/* after another in the columns of VL, in the same order */
+/* as their eigenvalues. */
+/* If JOBVL = 'N', VL is not referenced. */
+/* u(j) = VL(:,j), the j-th column of VL. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the array VL. LDVL >= 1; if */
+/* JOBVL = 'V', LDVL >= N. */
+
+/* VR (output) COMPLEX*16 array, dimension (LDVR,N) */
+/* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
+/* after another in the columns of VR, in the same order */
+/* as their eigenvalues. */
+/* If JOBVR = 'N', VR is not referenced. */
+/* v(j) = VR(:,j), the j-th column of VR. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. LDVR >= 1; if */
+/* JOBVR = 'V', LDVR >= N. */
+
+/* ILO (output) INTEGER */
+/* IHI (output) INTEGER */
+/* ILO and IHI are integer values determined when A was */
+/* balanced. The balanced A(i,j) = 0 if I > J and */
+/* J = 1,...,ILO-1 or I = IHI+1,...,N. */
+
+/* SCALE (output) DOUBLE PRECISION array, dimension (N) */
+/* Details of the permutations and scaling factors applied */
+/* when balancing A. If P(j) is the index of the row and column */
+/* interchanged with row and column j, and D(j) is the scaling */
+/* factor applied to row and column j, then */
+/* SCALE(J) = P(J), for J = 1,...,ILO-1 */
+/* = D(J), for J = ILO,...,IHI */
+/* = P(J) for J = IHI+1,...,N. */
+/* The order in which the interchanges are made is N to IHI+1, */
+/* then 1 to ILO-1. */
+
+/* ABNRM (output) DOUBLE PRECISION */
+/* The one-norm of the balanced matrix (the maximum */
+/* of the sum of absolute values of elements of any column). */
+
+/* RCONDE (output) DOUBLE PRECISION array, dimension (N) */
+/* RCONDE(j) is the reciprocal condition number of the j-th */
+/* eigenvalue. */
+
+/* RCONDV (output) DOUBLE PRECISION array, dimension (N) */
+/* RCONDV(j) is the reciprocal condition number of the j-th */
+/* right eigenvector. */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. If SENSE = 'N' or 'E', */
+/* LWORK >= max(1,2*N), and if SENSE = 'V' or 'B', */
+/* LWORK >= N*N+2*N. */
+/* For good performance, LWORK must generally be larger. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = i, the QR algorithm failed to compute all the */
+/* eigenvalues, and no eigenvectors or condition numbers */
+/* have been computed; elements 1:ILO-1 and i+1:N of W */
+/* contain eigenvalues which have converged. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --w;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --scale;
+ --rconde;
+ --rcondv;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ *info = 0;
+ lquery = *lwork == -1;
+ wantvl = lsame_(jobvl, "V");
+ wantvr = lsame_(jobvr, "V");
+ wntsnn = lsame_(sense, "N");
+ wntsne = lsame_(sense, "E");
+ wntsnv = lsame_(sense, "V");
+ wntsnb = lsame_(sense, "B");
+ if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
+ || lsame_(balanc, "B"))) {
+ *info = -1;
+ } else if (! wantvl && ! lsame_(jobvl, "N")) {
+ *info = -2;
+ } else if (! wantvr && ! lsame_(jobvr, "N")) {
+ *info = -3;
+ } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
+ && ! (wantvl && wantvr)) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*lda < max(1,*n)) {
+ *info = -7;
+ } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
+ *info = -10;
+ } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
+ *info = -12;
+ }
+
+/* Compute workspace */
+/* (Note: Comments in the code beginning "Workspace:" describe the */
+/* minimal amount of workspace needed at that point in the code, */
+/* as well as the preferred amount for good performance. */
+/* CWorkspace refers to complex workspace, and RWorkspace to real */
+/* workspace. NB refers to the optimal block size for the */
+/* immediately following subroutine, as returned by ILAENV. */
+/* HSWORK refers to the workspace preferred by ZHSEQR, as */
+/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
+/* the worst case.) */
+
+ if (*info == 0) {
+ if (*n == 0) {
+ minwrk = 1;
+ maxwrk = 1;
+ } else {
+ maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &
+ c__0);
+
+ if (wantvl) {
+ zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
+ vl_offset], ldvl, &work[1], &c_n1, info);
+ } else if (wantvr) {
+ zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
+ vr_offset], ldvr, &work[1], &c_n1, info);
+ } else {
+ if (wntsnn) {
+ zhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
+ vr[vr_offset], ldvr, &work[1], &c_n1, info);
+ } else {
+ zhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
+ vr[vr_offset], ldvr, &work[1], &c_n1, info);
+ }
+ }
+ hswork = (integer) work[1].r;
+
+ if (! wantvl && ! wantvr) {
+ minwrk = *n << 1;
+ if (! (wntsnn || wntsne)) {
+/* Computing MAX */
+ i__1 = minwrk, i__2 = *n * *n + (*n << 1);
+ minwrk = max(i__1,i__2);
+ }
+ maxwrk = max(maxwrk,hswork);
+ if (! (wntsnn || wntsne)) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
+ maxwrk = max(i__1,i__2);
+ }
+ } else {
+ minwrk = *n << 1;
+ if (! (wntsnn || wntsne)) {
+/* Computing MAX */
+ i__1 = minwrk, i__2 = *n * *n + (*n << 1);
+ minwrk = max(i__1,i__2);
+ }
+ maxwrk = max(maxwrk,hswork);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
+ " ", n, &c__1, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+ if (! (wntsnn || wntsne)) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
+ maxwrk = max(i__1,i__2);
+ }
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n << 1;
+ maxwrk = max(i__1,i__2);
+ }
+ maxwrk = max(maxwrk,minwrk);
+ }
+ work[1].r = (doublereal) maxwrk, work[1].i = 0.;
+
+ if (*lwork < minwrk && ! lquery) {
+ *info = -20;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZGEEVX", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = dlamch_("P");
+ smlnum = dlamch_("S");
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+ smlnum = sqrt(smlnum) / eps;
+ bignum = 1. / smlnum;
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ icond = 0;
+ anrm = zlange_("M", n, n, &a[a_offset], lda, dum);
+ scalea = FALSE_;
+ if (anrm > 0. && anrm < smlnum) {
+ scalea = TRUE_;
+ cscale = smlnum;
+ } else if (anrm > bignum) {
+ scalea = TRUE_;
+ cscale = bignum;
+ }
+ if (scalea) {
+ zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
+ ierr);
+ }
+
+/* Balance the matrix and compute ABNRM */
+
+ zgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
+ *abnrm = zlange_("1", n, n, &a[a_offset], lda, dum);
+ if (scalea) {
+ dum[0] = *abnrm;
+ dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
+ ierr);
+ *abnrm = dum[0];
+ }
+
+/* Reduce to upper Hessenberg form */
+/* (CWorkspace: need 2*N, prefer N+N*NB) */
+/* (RWorkspace: none) */
+
+ itau = 1;
+ iwrk = itau + *n;
+ i__1 = *lwork - iwrk + 1;
+ zgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
+ ierr);
+
+ if (wantvl) {
+
+/* Want left eigenvectors */
+/* Copy Householder vectors to VL */
+
+ *(unsigned char *)side = 'L';
+ zlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
+ ;
+
+/* Generate unitary matrix in VL */
+/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwrk + 1;
+ zunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
+ i__1, &ierr);
+
+/* Perform QR iteration, accumulating Schur vectors in VL */
+/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
+/* (RWorkspace: none) */
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
+ vl_offset], ldvl, &work[iwrk], &i__1, info);
+
+ if (wantvr) {
+
+/* Want left and right eigenvectors */
+/* Copy Schur vectors to VR */
+
+ *(unsigned char *)side = 'B';
+ zlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
+ }
+
+ } else if (wantvr) {
+
+/* Want right eigenvectors */
+/* Copy Householder vectors to VR */
+
+ *(unsigned char *)side = 'R';
+ zlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
+ ;
+
+/* Generate unitary matrix in VR */
+/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
+/* (RWorkspace: none) */
+
+ i__1 = *lwork - iwrk + 1;
+ zunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
+ i__1, &ierr);
+
+/* Perform QR iteration, accumulating Schur vectors in VR */
+/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
+/* (RWorkspace: none) */
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
+ vr_offset], ldvr, &work[iwrk], &i__1, info);
+
+ } else {
+
+/* Compute eigenvalues only */
+/* If condition numbers desired, compute Schur form */
+
+ if (wntsnn) {
+ *(unsigned char *)job = 'E';
+ } else {
+ *(unsigned char *)job = 'S';
+ }
+
+/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
+/* (RWorkspace: none) */
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ zhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
+ vr_offset], ldvr, &work[iwrk], &i__1, info);
+ }
+
+/* If INFO > 0 from ZHSEQR, then quit */
+
+ if (*info > 0) {
+ goto L50;
+ }
+
+ if (wantvl || wantvr) {
+
+/* Compute left and/or right eigenvectors */
+/* (CWorkspace: need 2*N) */
+/* (RWorkspace: need N) */
+
+ ztrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
+ &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[1], &
+ ierr);
+ }
+
+/* Compute condition numbers if desired */
+/* (CWorkspace: need N*N+2*N unless SENSE = 'E') */
+/* (RWorkspace: need 2*N unless SENSE = 'E') */
+
+ if (! wntsnn) {
+ ztrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
+ ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
+ &work[iwrk], n, &rwork[1], &icond);
+ }
+
+ if (wantvl) {
+
+/* Undo balancing of left eigenvectors */
+
+ zgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
+ &ierr);
+
+/* Normalize left eigenvectors and make largest component real */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ scl = 1. / dznrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
+ zdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + i__ * vl_dim1;
+/* Computing 2nd power */
+ d__1 = vl[i__3].r;
+/* Computing 2nd power */
+ d__2 = d_imag(&vl[k + i__ * vl_dim1]);
+ rwork[k] = d__1 * d__1 + d__2 * d__2;
+/* L10: */
+ }
+ k = idamax_(n, &rwork[1], &c__1);
+ d_cnjg(&z__2, &vl[k + i__ * vl_dim1]);
+ d__1 = sqrt(rwork[k]);
+ z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
+ tmp.r = z__1.r, tmp.i = z__1.i;
+ zscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
+ i__2 = k + i__ * vl_dim1;
+ i__3 = k + i__ * vl_dim1;
+ d__1 = vl[i__3].r;
+ z__1.r = d__1, z__1.i = 0.;
+ vl[i__2].r = z__1.r, vl[i__2].i = z__1.i;
+/* L20: */
+ }
+ }
+
+ if (wantvr) {
+
+/* Undo balancing of right eigenvectors */
+
+ zgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
+ &ierr);
+
+/* Normalize right eigenvectors and make largest component real */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ scl = 1. / dznrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
+ zdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + i__ * vr_dim1;
+/* Computing 2nd power */
+ d__1 = vr[i__3].r;
+/* Computing 2nd power */
+ d__2 = d_imag(&vr[k + i__ * vr_dim1]);
+ rwork[k] = d__1 * d__1 + d__2 * d__2;
+/* L30: */
+ }
+ k = idamax_(n, &rwork[1], &c__1);
+ d_cnjg(&z__2, &vr[k + i__ * vr_dim1]);
+ d__1 = sqrt(rwork[k]);
+ z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
+ tmp.r = z__1.r, tmp.i = z__1.i;
+ zscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
+ i__2 = k + i__ * vr_dim1;
+ i__3 = k + i__ * vr_dim1;
+ d__1 = vr[i__3].r;
+ z__1.r = d__1, z__1.i = 0.;
+ vr[i__2].r = z__1.r, vr[i__2].i = z__1.i;
+/* L40: */
+ }
+ }
+
+/* Undo scaling if necessary */
+
+L50:
+ if (scalea) {
+ i__1 = *n - *info;
+/* Computing MAX */
+ i__3 = *n - *info;
+ i__2 = max(i__3,1);
+ zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
+, &i__2, &ierr);
+ if (*info == 0) {
+ if ((wntsnv || wntsnb) && icond == 0) {
+ dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
+ 1], n, &ierr);
+ }
+ } else {
+ i__1 = *ilo - 1;
+ zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
+ &ierr);
+ }
+ }
+
+ work[1].r = (doublereal) maxwrk, work[1].i = 0.;
+ return 0;
+
+/* End of ZGEEVX */
+
+} /* zgeevx_ */