diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgebd2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgebd2.c')
-rw-r--r-- | contrib/libs/clapack/zgebd2.c | 345 |
1 files changed, 345 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgebd2.c b/contrib/libs/clapack/zgebd2.c new file mode 100644 index 0000000000..8522fa8451 --- /dev/null +++ b/contrib/libs/clapack/zgebd2.c @@ -0,0 +1,345 @@ +/* zgebd2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int zgebd2_(integer *m, integer *n, doublecomplex *a, + integer *lda, doublereal *d__, doublereal *e, doublecomplex *tauq, + doublecomplex *taup, doublecomplex *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + doublecomplex z__1; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + integer i__; + doublecomplex alpha; + extern /* Subroutine */ int zlarf_(char *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, doublecomplex *, + integer *, doublecomplex *), xerbla_(char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, + integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *, + integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZGEBD2 reduces a complex general m by n matrix A to upper or lower */ +/* real bidiagonal form B by a unitary transformation: Q' * A * P = B. */ + +/* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows in the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns in the matrix A. N >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ +/* On entry, the m by n general matrix to be reduced. */ +/* On exit, */ +/* if m >= n, the diagonal and the first superdiagonal are */ +/* overwritten with the upper bidiagonal matrix B; the */ +/* elements below the diagonal, with the array TAUQ, represent */ +/* the unitary matrix Q as a product of elementary */ +/* reflectors, and the elements above the first superdiagonal, */ +/* with the array TAUP, represent the unitary matrix P as */ +/* a product of elementary reflectors; */ +/* if m < n, the diagonal and the first subdiagonal are */ +/* overwritten with the lower bidiagonal matrix B; the */ +/* elements below the first subdiagonal, with the array TAUQ, */ +/* represent the unitary matrix Q as a product of */ +/* elementary reflectors, and the elements above the diagonal, */ +/* with the array TAUP, represent the unitary matrix P as */ +/* a product of elementary reflectors. */ +/* See Further Details. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* D (output) DOUBLE PRECISION array, dimension (min(M,N)) */ +/* The diagonal elements of the bidiagonal matrix B: */ +/* D(i) = A(i,i). */ + +/* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */ +/* The off-diagonal elements of the bidiagonal matrix B: */ +/* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */ +/* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */ + +/* TAUQ (output) COMPLEX*16 array dimension (min(M,N)) */ +/* The scalar factors of the elementary reflectors which */ +/* represent the unitary matrix Q. See Further Details. */ + +/* TAUP (output) COMPLEX*16 array, dimension (min(M,N)) */ +/* The scalar factors of the elementary reflectors which */ +/* represent the unitary matrix P. See Further Details. */ + +/* WORK (workspace) COMPLEX*16 array, dimension (max(M,N)) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* Further Details */ +/* =============== */ + +/* The matrices Q and P are represented as products of elementary */ +/* reflectors: */ + +/* If m >= n, */ + +/* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */ + +/* Each H(i) and G(i) has the form: */ + +/* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ + +/* where tauq and taup are complex scalars, and v and u are complex */ +/* vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in */ +/* A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in */ +/* A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */ + +/* If m < n, */ + +/* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */ + +/* Each H(i) and G(i) has the form: */ + +/* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ + +/* where tauq and taup are complex scalars, v and u are complex vectors; */ +/* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */ +/* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */ +/* tauq is stored in TAUQ(i) and taup in TAUP(i). */ + +/* The contents of A on exit are illustrated by the following examples: */ + +/* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ + +/* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */ +/* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */ +/* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */ +/* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */ +/* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */ +/* ( v1 v2 v3 v4 v5 ) */ + +/* where d and e denote diagonal and off-diagonal elements of B, vi */ +/* denotes an element of the vector defining H(i), and ui an element of */ +/* the vector defining G(i). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tauq; + --taup; + --work; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info < 0) { + i__1 = -(*info); + xerbla_("ZGEBD2", &i__1); + return 0; + } + + if (*m >= *n) { + +/* Reduce to upper bidiagonal form */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ + + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *m - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + zlarfg_(&i__2, &alpha, &a[min(i__3, *m)+ i__ * a_dim1], &c__1, & + tauq[i__]); + i__2 = i__; + d__[i__2] = alpha.r; + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1., a[i__2].i = 0.; + +/* Apply H(i)' to A(i:m,i+1:n) from the left */ + + if (i__ < *n) { + i__2 = *m - i__ + 1; + i__3 = *n - i__; + d_cnjg(&z__1, &tauq[i__]); + zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, & + z__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); + } + i__2 = i__ + i__ * a_dim1; + i__3 = i__; + a[i__2].r = d__[i__3], a[i__2].i = 0.; + + if (i__ < *n) { + +/* Generate elementary reflector G(i) to annihilate */ +/* A(i,i+2:n) */ + + i__2 = *n - i__; + zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = i__ + (i__ + 1) * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__; +/* Computing MIN */ + i__3 = i__ + 2; + zlarfg_(&i__2, &alpha, &a[i__ + min(i__3, *n)* a_dim1], lda, & + taup[i__]); + i__2 = i__; + e[i__2] = alpha.r; + i__2 = i__ + (i__ + 1) * a_dim1; + a[i__2].r = 1., a[i__2].i = 0.; + +/* Apply G(i) to A(i+1:m,i+1:n) from the right */ + + i__2 = *m - i__; + i__3 = *n - i__; + zlarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1], + lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], + lda, &work[1]); + i__2 = *n - i__; + zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); + i__2 = i__ + (i__ + 1) * a_dim1; + i__3 = i__; + a[i__2].r = e[i__3], a[i__2].i = 0.; + } else { + i__2 = i__; + taup[i__2].r = 0., taup[i__2].i = 0.; + } +/* L10: */ + } + } else { + +/* Reduce to lower bidiagonal form */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */ + + i__2 = *n - i__ + 1; + zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + i__2 = i__ + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *n - i__ + 1; +/* Computing MIN */ + i__3 = i__ + 1; + zlarfg_(&i__2, &alpha, &a[i__ + min(i__3, *n)* a_dim1], lda, & + taup[i__]); + i__2 = i__; + d__[i__2] = alpha.r; + i__2 = i__ + i__ * a_dim1; + a[i__2].r = 1., a[i__2].i = 0.; + +/* Apply G(i) to A(i+1:m,i:n) from the right */ + + if (i__ < *m) { + i__2 = *m - i__; + i__3 = *n - i__ + 1; + zlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, & + taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); + } + i__2 = *n - i__ + 1; + zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda); + i__2 = i__ + i__ * a_dim1; + i__3 = i__; + a[i__2].r = d__[i__3], a[i__2].i = 0.; + + if (i__ < *m) { + +/* Generate elementary reflector H(i) to annihilate */ +/* A(i+2:m,i) */ + + i__2 = i__ + 1 + i__ * a_dim1; + alpha.r = a[i__2].r, alpha.i = a[i__2].i; + i__2 = *m - i__; +/* Computing MIN */ + i__3 = i__ + 2; + zlarfg_(&i__2, &alpha, &a[min(i__3, *m)+ i__ * a_dim1], &c__1, + &tauq[i__]); + i__2 = i__; + e[i__2] = alpha.r; + i__2 = i__ + 1 + i__ * a_dim1; + a[i__2].r = 1., a[i__2].i = 0.; + +/* Apply H(i)' to A(i+1:m,i+1:n) from the left */ + + i__2 = *m - i__; + i__3 = *n - i__; + d_cnjg(&z__1, &tauq[i__]); + zlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], & + c__1, &z__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, & + work[1]); + i__2 = i__ + 1 + i__ * a_dim1; + i__3 = i__; + a[i__2].r = e[i__3], a[i__2].i = 0.; + } else { + i__2 = i__; + tauq[i__2].r = 0., tauq[i__2].i = 0.; + } +/* L20: */ + } + } + return 0; + +/* End of ZGEBD2 */ + +} /* zgebd2_ */ |