diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgbsvx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgbsvx.c')
-rw-r--r-- | contrib/libs/clapack/zgbsvx.c | 678 |
1 files changed, 678 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgbsvx.c b/contrib/libs/clapack/zgbsvx.c new file mode 100644 index 0000000000..860abf599a --- /dev/null +++ b/contrib/libs/clapack/zgbsvx.c @@ -0,0 +1,678 @@ +/* zgbsvx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int zgbsvx_(char *fact, char *trans, integer *n, integer *kl, + integer *ku, integer *nrhs, doublecomplex *ab, integer *ldab, + doublecomplex *afb, integer *ldafb, integer *ipiv, char *equed, + doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb, + doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *ferr, + doublereal *berr, doublecomplex *work, doublereal *rwork, integer * + info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, + x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5; + doublereal d__1, d__2; + doublecomplex z__1; + + /* Builtin functions */ + double z_abs(doublecomplex *); + + /* Local variables */ + integer i__, j, j1, j2; + doublereal amax; + char norm[1]; + extern logical lsame_(char *, char *); + doublereal rcmin, rcmax, anorm; + logical equil; + extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *); + extern doublereal dlamch_(char *); + doublereal colcnd; + logical nofact; + extern doublereal zlangb_(char *, integer *, integer *, integer *, + doublecomplex *, integer *, doublereal *); + extern /* Subroutine */ int xerbla_(char *, integer *), zlaqgb_( + integer *, integer *, integer *, integer *, doublecomplex *, + integer *, doublereal *, doublereal *, doublereal *, doublereal *, + doublereal *, char *); + doublereal bignum; + extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer + *, doublecomplex *, integer *, integer *, doublereal *, + doublereal *, doublecomplex *, doublereal *, integer *); + integer infequ; + logical colequ; + extern doublereal zlantb_(char *, char *, char *, integer *, integer *, + doublecomplex *, integer *, doublereal *); + doublereal rowcnd; + extern /* Subroutine */ int zgbequ_(integer *, integer *, integer *, + integer *, doublecomplex *, integer *, doublereal *, doublereal *, + doublereal *, doublereal *, doublereal *, integer *), zgbrfs_( + char *, integer *, integer *, integer *, integer *, doublecomplex + *, integer *, doublecomplex *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *, + doublereal *, doublereal *, doublecomplex *, doublereal *, + integer *), zgbtrf_(integer *, integer *, integer *, + integer *, doublecomplex *, integer *, integer *, integer *); + logical notran; + extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *); + doublereal smlnum; + extern /* Subroutine */ int zgbtrs_(char *, integer *, integer *, integer + *, integer *, doublecomplex *, integer *, integer *, + doublecomplex *, integer *, integer *); + logical rowequ; + doublereal rpvgrw; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZGBSVX uses the LU factorization to compute the solution to a complex */ +/* system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */ +/* where A is a band matrix of order N with KL subdiagonals and KU */ +/* superdiagonals, and X and B are N-by-NRHS matrices. */ + +/* Error bounds on the solution and a condition estimate are also */ +/* provided. */ + +/* Description */ +/* =========== */ + +/* The following steps are performed by this subroutine: */ + +/* 1. If FACT = 'E', real scaling factors are computed to equilibrate */ +/* the system: */ +/* TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */ +/* TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */ +/* TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */ +/* Whether or not the system will be equilibrated depends on the */ +/* scaling of the matrix A, but if equilibration is used, A is */ +/* overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */ +/* or diag(C)*B (if TRANS = 'T' or 'C'). */ + +/* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */ +/* matrix A (after equilibration if FACT = 'E') as */ +/* A = L * U, */ +/* where L is a product of permutation and unit lower triangular */ +/* matrices with KL subdiagonals, and U is upper triangular with */ +/* KL+KU superdiagonals. */ + +/* 3. If some U(i,i)=0, so that U is exactly singular, then the routine */ +/* returns with INFO = i. Otherwise, the factored form of A is used */ +/* to estimate the condition number of the matrix A. If the */ +/* reciprocal of the condition number is less than machine precision, */ +/* INFO = N+1 is returned as a warning, but the routine still goes on */ +/* to solve for X and compute error bounds as described below. */ + +/* 4. The system of equations is solved for X using the factored form */ +/* of A. */ + +/* 5. Iterative refinement is applied to improve the computed solution */ +/* matrix and calculate error bounds and backward error estimates */ +/* for it. */ + +/* 6. If equilibration was used, the matrix X is premultiplied by */ +/* diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */ +/* that it solves the original system before equilibration. */ + +/* Arguments */ +/* ========= */ + +/* FACT (input) CHARACTER*1 */ +/* Specifies whether or not the factored form of the matrix A is */ +/* supplied on entry, and if not, whether the matrix A should be */ +/* equilibrated before it is factored. */ +/* = 'F': On entry, AFB and IPIV contain the factored form of */ +/* A. If EQUED is not 'N', the matrix A has been */ +/* equilibrated with scaling factors given by R and C. */ +/* AB, AFB, and IPIV are not modified. */ +/* = 'N': The matrix A will be copied to AFB and factored. */ +/* = 'E': The matrix A will be equilibrated if necessary, then */ +/* copied to AFB and factored. */ + +/* TRANS (input) CHARACTER*1 */ +/* Specifies the form of the system of equations. */ +/* = 'N': A * X = B (No transpose) */ +/* = 'T': A**T * X = B (Transpose) */ +/* = 'C': A**H * X = B (Conjugate transpose) */ + +/* N (input) INTEGER */ +/* The number of linear equations, i.e., the order of the */ +/* matrix A. N >= 0. */ + +/* KL (input) INTEGER */ +/* The number of subdiagonals within the band of A. KL >= 0. */ + +/* KU (input) INTEGER */ +/* The number of superdiagonals within the band of A. KU >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrices B and X. NRHS >= 0. */ + +/* AB (input/output) COMPLEX*16 array, dimension (LDAB,N) */ +/* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ +/* The j-th column of A is stored in the j-th column of the */ +/* array AB as follows: */ +/* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */ + +/* If FACT = 'F' and EQUED is not 'N', then A must have been */ +/* equilibrated by the scaling factors in R and/or C. AB is not */ +/* modified if FACT = 'F' or 'N', or if FACT = 'E' and */ +/* EQUED = 'N' on exit. */ + +/* On exit, if EQUED .ne. 'N', A is scaled as follows: */ +/* EQUED = 'R': A := diag(R) * A */ +/* EQUED = 'C': A := A * diag(C) */ +/* EQUED = 'B': A := diag(R) * A * diag(C). */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KL+KU+1. */ + +/* AFB (input or output) COMPLEX*16 array, dimension (LDAFB,N) */ +/* If FACT = 'F', then AFB is an input argument and on entry */ +/* contains details of the LU factorization of the band matrix */ +/* A, as computed by ZGBTRF. U is stored as an upper triangular */ +/* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */ +/* and the multipliers used during the factorization are stored */ +/* in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */ +/* the factored form of the equilibrated matrix A. */ + +/* If FACT = 'N', then AFB is an output argument and on exit */ +/* returns details of the LU factorization of A. */ + +/* If FACT = 'E', then AFB is an output argument and on exit */ +/* returns details of the LU factorization of the equilibrated */ +/* matrix A (see the description of AB for the form of the */ +/* equilibrated matrix). */ + +/* LDAFB (input) INTEGER */ +/* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */ + +/* IPIV (input or output) INTEGER array, dimension (N) */ +/* If FACT = 'F', then IPIV is an input argument and on entry */ +/* contains the pivot indices from the factorization A = L*U */ +/* as computed by ZGBTRF; row i of the matrix was interchanged */ +/* with row IPIV(i). */ + +/* If FACT = 'N', then IPIV is an output argument and on exit */ +/* contains the pivot indices from the factorization A = L*U */ +/* of the original matrix A. */ + +/* If FACT = 'E', then IPIV is an output argument and on exit */ +/* contains the pivot indices from the factorization A = L*U */ +/* of the equilibrated matrix A. */ + +/* EQUED (input or output) CHARACTER*1 */ +/* Specifies the form of equilibration that was done. */ +/* = 'N': No equilibration (always true if FACT = 'N'). */ +/* = 'R': Row equilibration, i.e., A has been premultiplied by */ +/* diag(R). */ +/* = 'C': Column equilibration, i.e., A has been postmultiplied */ +/* by diag(C). */ +/* = 'B': Both row and column equilibration, i.e., A has been */ +/* replaced by diag(R) * A * diag(C). */ +/* EQUED is an input argument if FACT = 'F'; otherwise, it is an */ +/* output argument. */ + +/* R (input or output) DOUBLE PRECISION array, dimension (N) */ +/* The row scale factors for A. If EQUED = 'R' or 'B', A is */ +/* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ +/* is not accessed. R is an input argument if FACT = 'F'; */ +/* otherwise, R is an output argument. If FACT = 'F' and */ +/* EQUED = 'R' or 'B', each element of R must be positive. */ + +/* C (input or output) DOUBLE PRECISION array, dimension (N) */ +/* The column scale factors for A. If EQUED = 'C' or 'B', A is */ +/* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ +/* is not accessed. C is an input argument if FACT = 'F'; */ +/* otherwise, C is an output argument. If FACT = 'F' and */ +/* EQUED = 'C' or 'B', each element of C must be positive. */ + +/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ +/* On entry, the right hand side matrix B. */ +/* On exit, */ +/* if EQUED = 'N', B is not modified; */ +/* if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */ +/* diag(R)*B; */ +/* if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */ +/* overwritten by diag(C)*B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* X (output) COMPLEX*16 array, dimension (LDX,NRHS) */ +/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */ +/* to the original system of equations. Note that A and B are */ +/* modified on exit if EQUED .ne. 'N', and the solution to the */ +/* equilibrated system is inv(diag(C))*X if TRANS = 'N' and */ +/* EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */ +/* and EQUED = 'R' or 'B'. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of the array X. LDX >= max(1,N). */ + +/* RCOND (output) DOUBLE PRECISION */ +/* The estimate of the reciprocal condition number of the matrix */ +/* A after equilibration (if done). If RCOND is less than the */ +/* machine precision (in particular, if RCOND = 0), the matrix */ +/* is singular to working precision. This condition is */ +/* indicated by a return code of INFO > 0. */ + +/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ +/* The estimated forward error bound for each solution vector */ +/* X(j) (the j-th column of the solution matrix X). */ +/* If XTRUE is the true solution corresponding to X(j), FERR(j) */ +/* is an estimated upper bound for the magnitude of the largest */ +/* element in (X(j) - XTRUE) divided by the magnitude of the */ +/* largest element in X(j). The estimate is as reliable as */ +/* the estimate for RCOND, and is almost always a slight */ +/* overestimate of the true error. */ + +/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ +/* The componentwise relative backward error of each solution */ +/* vector X(j) (i.e., the smallest relative change in */ +/* any element of A or B that makes X(j) an exact solution). */ + +/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ + +/* RWORK (workspace/output) DOUBLE PRECISION array, dimension (N) */ +/* On exit, RWORK(1) contains the reciprocal pivot growth */ +/* factor norm(A)/norm(U). The "max absolute element" norm is */ +/* used. If RWORK(1) is much less than 1, then the stability */ +/* of the LU factorization of the (equilibrated) matrix A */ +/* could be poor. This also means that the solution X, condition */ +/* estimator RCOND, and forward error bound FERR could be */ +/* unreliable. If factorization fails with 0<INFO<=N, then */ +/* RWORK(1) contains the reciprocal pivot growth factor for the */ +/* leading INFO columns of A. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, and i is */ +/* <= N: U(i,i) is exactly zero. The factorization */ +/* has been completed, but the factor U is exactly */ +/* singular, so the solution and error bounds */ +/* could not be computed. RCOND = 0 is returned. */ +/* = N+1: U is nonsingular, but RCOND is less than machine */ +/* precision, meaning that the matrix is singular */ +/* to working precision. Nevertheless, the */ +/* solution and error bounds are computed because */ +/* there are a number of situations where the */ +/* computed solution can be more accurate than the */ +/* value of RCOND would suggest. */ + +/* ===================================================================== */ +/* Moved setting of INFO = N+1 so INFO does not subsequently get */ +/* overwritten. Sven, 17 Mar 05. */ +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + afb_dim1 = *ldafb; + afb_offset = 1 + afb_dim1; + afb -= afb_offset; + --ipiv; + --r__; + --c__; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + --ferr; + --berr; + --work; + --rwork; + + /* Function Body */ + *info = 0; + nofact = lsame_(fact, "N"); + equil = lsame_(fact, "E"); + notran = lsame_(trans, "N"); + if (nofact || equil) { + *(unsigned char *)equed = 'N'; + rowequ = FALSE_; + colequ = FALSE_; + } else { + rowequ = lsame_(equed, "R") || lsame_(equed, + "B"); + colequ = lsame_(equed, "C") || lsame_(equed, + "B"); + smlnum = dlamch_("Safe minimum"); + bignum = 1. / smlnum; + } + +/* Test the input parameters. */ + + if (! nofact && ! equil && ! lsame_(fact, "F")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "T") && ! + lsame_(trans, "C")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*kl < 0) { + *info = -4; + } else if (*ku < 0) { + *info = -5; + } else if (*nrhs < 0) { + *info = -6; + } else if (*ldab < *kl + *ku + 1) { + *info = -8; + } else if (*ldafb < (*kl << 1) + *ku + 1) { + *info = -10; + } else if (lsame_(fact, "F") && ! (rowequ || colequ + || lsame_(equed, "N"))) { + *info = -12; + } else { + if (rowequ) { + rcmin = bignum; + rcmax = 0.; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + d__1 = rcmin, d__2 = r__[j]; + rcmin = min(d__1,d__2); +/* Computing MAX */ + d__1 = rcmax, d__2 = r__[j]; + rcmax = max(d__1,d__2); +/* L10: */ + } + if (rcmin <= 0.) { + *info = -13; + } else if (*n > 0) { + rowcnd = max(rcmin,smlnum) / min(rcmax,bignum); + } else { + rowcnd = 1.; + } + } + if (colequ && *info == 0) { + rcmin = bignum; + rcmax = 0.; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + d__1 = rcmin, d__2 = c__[j]; + rcmin = min(d__1,d__2); +/* Computing MAX */ + d__1 = rcmax, d__2 = c__[j]; + rcmax = max(d__1,d__2); +/* L20: */ + } + if (rcmin <= 0.) { + *info = -14; + } else if (*n > 0) { + colcnd = max(rcmin,smlnum) / min(rcmax,bignum); + } else { + colcnd = 1.; + } + } + if (*info == 0) { + if (*ldb < max(1,*n)) { + *info = -16; + } else if (*ldx < max(1,*n)) { + *info = -18; + } + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZGBSVX", &i__1); + return 0; + } + + if (equil) { + +/* Compute row and column scalings to equilibrate the matrix A. */ + + zgbequ_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &rowcnd, + &colcnd, &amax, &infequ); + if (infequ == 0) { + +/* Equilibrate the matrix. */ + + zlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], & + rowcnd, &colcnd, &amax, equed); + rowequ = lsame_(equed, "R") || lsame_(equed, + "B"); + colequ = lsame_(equed, "C") || lsame_(equed, + "B"); + } + } + +/* Scale the right hand side. */ + + if (notran) { + if (rowequ) { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__; + i__5 = i__ + j * b_dim1; + z__1.r = r__[i__4] * b[i__5].r, z__1.i = r__[i__4] * b[ + i__5].i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L30: */ + } +/* L40: */ + } + } + } else if (colequ) { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__; + i__5 = i__ + j * b_dim1; + z__1.r = c__[i__4] * b[i__5].r, z__1.i = c__[i__4] * b[i__5] + .i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L50: */ + } +/* L60: */ + } + } + + if (nofact || equil) { + +/* Compute the LU factorization of the band matrix A. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = j - *ku; + j1 = max(i__2,1); +/* Computing MIN */ + i__2 = j + *kl; + j2 = min(i__2,*n); + i__2 = j2 - j1 + 1; + zcopy_(&i__2, &ab[*ku + 1 - j + j1 + j * ab_dim1], &c__1, &afb[* + kl + *ku + 1 - j + j1 + j * afb_dim1], &c__1); +/* L70: */ + } + + zgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info); + +/* Return if INFO is non-zero. */ + + if (*info > 0) { + +/* Compute the reciprocal pivot growth factor of the */ +/* leading rank-deficient INFO columns of A. */ + + anorm = 0.; + i__1 = *info; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = *ku + 2 - j; +/* Computing MIN */ + i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1; + i__3 = min(i__4,i__5); + for (i__ = max(i__2,1); i__ <= i__3; ++i__) { +/* Computing MAX */ + d__1 = anorm, d__2 = z_abs(&ab[i__ + j * ab_dim1]); + anorm = max(d__1,d__2); +/* L80: */ + } +/* L90: */ + } +/* Computing MIN */ + i__3 = *info - 1, i__2 = *kl + *ku; + i__1 = min(i__3,i__2); +/* Computing MAX */ + i__4 = 1, i__5 = *kl + *ku + 2 - *info; + rpvgrw = zlantb_("M", "U", "N", info, &i__1, &afb[max(i__4, i__5) + + afb_dim1], ldafb, &rwork[1]); + if (rpvgrw == 0.) { + rpvgrw = 1.; + } else { + rpvgrw = anorm / rpvgrw; + } + rwork[1] = rpvgrw; + *rcond = 0.; + return 0; + } + } + +/* Compute the norm of the matrix A and the */ +/* reciprocal pivot growth factor RPVGRW. */ + + if (notran) { + *(unsigned char *)norm = '1'; + } else { + *(unsigned char *)norm = 'I'; + } + anorm = zlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &rwork[1]); + i__1 = *kl + *ku; + rpvgrw = zlantb_("M", "U", "N", n, &i__1, &afb[afb_offset], ldafb, &rwork[ + 1]); + if (rpvgrw == 0.) { + rpvgrw = 1.; + } else { + rpvgrw = zlangb_("M", n, kl, ku, &ab[ab_offset], ldab, &rwork[1]) / rpvgrw; + } + +/* Compute the reciprocal of the condition number of A. */ + + zgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond, + &work[1], &rwork[1], info); + +/* Compute the solution matrix X. */ + + zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); + zgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[ + x_offset], ldx, info); + +/* Use iterative refinement to improve the computed solution and */ +/* compute error bounds and backward error estimates for it. */ + + zgbrfs_(trans, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], + ldafb, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], & + berr[1], &work[1], &rwork[1], info); + +/* Transform the solution matrix X to a solution of the original */ +/* system. */ + + if (notran) { + if (colequ) { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__3 = *n; + for (i__ = 1; i__ <= i__3; ++i__) { + i__2 = i__ + j * x_dim1; + i__4 = i__; + i__5 = i__ + j * x_dim1; + z__1.r = c__[i__4] * x[i__5].r, z__1.i = c__[i__4] * x[ + i__5].i; + x[i__2].r = z__1.r, x[i__2].i = z__1.i; +/* L100: */ + } +/* L110: */ + } + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + ferr[j] /= colcnd; +/* L120: */ + } + } + } else if (rowequ) { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__3 = *n; + for (i__ = 1; i__ <= i__3; ++i__) { + i__2 = i__ + j * x_dim1; + i__4 = i__; + i__5 = i__ + j * x_dim1; + z__1.r = r__[i__4] * x[i__5].r, z__1.i = r__[i__4] * x[i__5] + .i; + x[i__2].r = z__1.r, x[i__2].i = z__1.i; +/* L130: */ + } +/* L140: */ + } + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + ferr[j] /= rowcnd; +/* L150: */ + } + } + +/* Set INFO = N+1 if the matrix is singular to working precision. */ + + if (*rcond < dlamch_("Epsilon")) { + *info = *n + 1; + } + + rwork[1] = rpvgrw; + return 0; + +/* End of ZGBSVX */ + +} /* zgbsvx_ */ |