diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stzrqf.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stzrqf.c')
-rw-r--r-- | contrib/libs/clapack/stzrqf.c | 219 |
1 files changed, 219 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stzrqf.c b/contrib/libs/clapack/stzrqf.c new file mode 100644 index 0000000000..1a31566aed --- /dev/null +++ b/contrib/libs/clapack/stzrqf.c @@ -0,0 +1,219 @@ +/* stzrqf.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static real c_b8 = 1.f; + +/* Subroutine */ int stzrqf_(integer *m, integer *n, real *a, integer *lda, + real *tau, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + real r__1; + + /* Local variables */ + integer i__, k, m1; + extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, + integer *, real *, integer *, real *, integer *), sgemv_(char *, + integer *, integer *, real *, real *, integer *, real *, integer * +, real *, real *, integer *), scopy_(integer *, real *, + integer *, real *, integer *), saxpy_(integer *, real *, real *, + integer *, real *, integer *), xerbla_(char *, integer *), + slarfp_(integer *, real *, real *, integer *, real *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* This routine is deprecated and has been replaced by routine STZRZF. */ + +/* STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */ +/* to upper triangular form by means of orthogonal transformations. */ + +/* The upper trapezoidal matrix A is factored as */ + +/* A = ( R 0 ) * Z, */ + +/* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */ +/* triangular matrix. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= M. */ + +/* A (input/output) REAL array, dimension (LDA,N) */ +/* On entry, the leading M-by-N upper trapezoidal part of the */ +/* array A must contain the matrix to be factorized. */ +/* On exit, the leading M-by-M upper triangular part of A */ +/* contains the upper triangular matrix R, and elements M+1 to */ +/* N of the first M rows of A, with the array TAU, represent the */ +/* orthogonal matrix Z as a product of M elementary reflectors. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* TAU (output) REAL array, dimension (M) */ +/* The scalar factors of the elementary reflectors. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Further Details */ +/* =============== */ + +/* The factorization is obtained by Householder's method. The kth */ +/* transformation matrix, Z( k ), which is used to introduce zeros into */ +/* the ( m - k + 1 )th row of A, is given in the form */ + +/* Z( k ) = ( I 0 ), */ +/* ( 0 T( k ) ) */ + +/* where */ + +/* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ +/* ( 0 ) */ +/* ( z( k ) ) */ + +/* tau is a scalar and z( k ) is an ( n - m ) element vector. */ +/* tau and z( k ) are chosen to annihilate the elements of the kth row */ +/* of X. */ + +/* The scalar tau is returned in the kth element of TAU and the vector */ +/* u( k ) in the kth row of A, such that the elements of z( k ) are */ +/* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */ +/* the upper triangular part of A. */ + +/* Z is given by */ + +/* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < *m) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("STZRQF", &i__1); + return 0; + } + +/* Perform the factorization. */ + + if (*m == 0) { + return 0; + } + if (*m == *n) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + tau[i__] = 0.f; +/* L10: */ + } + } else { +/* Computing MIN */ + i__1 = *m + 1; + m1 = min(i__1,*n); + for (k = *m; k >= 1; --k) { + +/* Use a Householder reflection to zero the kth row of A. */ +/* First set up the reflection. */ + + i__1 = *n - *m + 1; + slarfp_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[ + k]); + + if (tau[k] != 0.f && k > 1) { + +/* We now perform the operation A := A*P( k ). */ + +/* Use the first ( k - 1 ) elements of TAU to store a( k ), */ +/* where a( k ) consists of the first ( k - 1 ) elements of */ +/* the kth column of A. Also let B denote the first */ +/* ( k - 1 ) rows of the last ( n - m ) columns of A. */ + + i__1 = k - 1; + scopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1); + +/* Form w = a( k ) + B*z( k ) in TAU. */ + + i__1 = k - 1; + i__2 = *n - *m; + sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 + + 1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], & + c__1); + +/* Now form a( k ) := a( k ) - tau*w */ +/* and B := B - tau*w*z( k )'. */ + + i__1 = k - 1; + r__1 = -tau[k]; + saxpy_(&i__1, &r__1, &tau[1], &c__1, &a[k * a_dim1 + 1], & + c__1); + i__1 = k - 1; + i__2 = *n - *m; + r__1 = -tau[k]; + sger_(&i__1, &i__2, &r__1, &tau[1], &c__1, &a[k + m1 * a_dim1] +, lda, &a[m1 * a_dim1 + 1], lda); + } +/* L20: */ + } + } + + return 0; + +/* End of STZRQF */ + +} /* stzrqf_ */ |