aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/stzrqf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stzrqf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stzrqf.c')
-rw-r--r--contrib/libs/clapack/stzrqf.c219
1 files changed, 219 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stzrqf.c b/contrib/libs/clapack/stzrqf.c
new file mode 100644
index 0000000000..1a31566aed
--- /dev/null
+++ b/contrib/libs/clapack/stzrqf.c
@@ -0,0 +1,219 @@
+/* stzrqf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static real c_b8 = 1.f;
+
+/* Subroutine */ int stzrqf_(integer *m, integer *n, real *a, integer *lda,
+ real *tau, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ real r__1;
+
+ /* Local variables */
+ integer i__, k, m1;
+ extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
+ integer *, real *, integer *, real *, integer *), sgemv_(char *,
+ integer *, integer *, real *, real *, integer *, real *, integer *
+, real *, real *, integer *), scopy_(integer *, real *,
+ integer *, real *, integer *), saxpy_(integer *, real *, real *,
+ integer *, real *, integer *), xerbla_(char *, integer *),
+ slarfp_(integer *, real *, real *, integer *, real *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* This routine is deprecated and has been replaced by routine STZRZF. */
+
+/* STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
+/* to upper triangular form by means of orthogonal transformations. */
+
+/* The upper trapezoidal matrix A is factored as */
+
+/* A = ( R 0 ) * Z, */
+
+/* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
+/* triangular matrix. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= M. */
+
+/* A (input/output) REAL array, dimension (LDA,N) */
+/* On entry, the leading M-by-N upper trapezoidal part of the */
+/* array A must contain the matrix to be factorized. */
+/* On exit, the leading M-by-M upper triangular part of A */
+/* contains the upper triangular matrix R, and elements M+1 to */
+/* N of the first M rows of A, with the array TAU, represent the */
+/* orthogonal matrix Z as a product of M elementary reflectors. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* TAU (output) REAL array, dimension (M) */
+/* The scalar factors of the elementary reflectors. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* The factorization is obtained by Householder's method. The kth */
+/* transformation matrix, Z( k ), which is used to introduce zeros into */
+/* the ( m - k + 1 )th row of A, is given in the form */
+
+/* Z( k ) = ( I 0 ), */
+/* ( 0 T( k ) ) */
+
+/* where */
+
+/* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */
+/* ( 0 ) */
+/* ( z( k ) ) */
+
+/* tau is a scalar and z( k ) is an ( n - m ) element vector. */
+/* tau and z( k ) are chosen to annihilate the elements of the kth row */
+/* of X. */
+
+/* The scalar tau is returned in the kth element of TAU and the vector */
+/* u( k ) in the kth row of A, such that the elements of z( k ) are */
+/* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
+/* the upper triangular part of A. */
+
+/* Z is given by */
+
+/* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --tau;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < *m) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("STZRQF", &i__1);
+ return 0;
+ }
+
+/* Perform the factorization. */
+
+ if (*m == 0) {
+ return 0;
+ }
+ if (*m == *n) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ tau[i__] = 0.f;
+/* L10: */
+ }
+ } else {
+/* Computing MIN */
+ i__1 = *m + 1;
+ m1 = min(i__1,*n);
+ for (k = *m; k >= 1; --k) {
+
+/* Use a Householder reflection to zero the kth row of A. */
+/* First set up the reflection. */
+
+ i__1 = *n - *m + 1;
+ slarfp_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
+ k]);
+
+ if (tau[k] != 0.f && k > 1) {
+
+/* We now perform the operation A := A*P( k ). */
+
+/* Use the first ( k - 1 ) elements of TAU to store a( k ), */
+/* where a( k ) consists of the first ( k - 1 ) elements of */
+/* the kth column of A. Also let B denote the first */
+/* ( k - 1 ) rows of the last ( n - m ) columns of A. */
+
+ i__1 = k - 1;
+ scopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);
+
+/* Form w = a( k ) + B*z( k ) in TAU. */
+
+ i__1 = k - 1;
+ i__2 = *n - *m;
+ sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 +
+ 1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
+ c__1);
+
+/* Now form a( k ) := a( k ) - tau*w */
+/* and B := B - tau*w*z( k )'. */
+
+ i__1 = k - 1;
+ r__1 = -tau[k];
+ saxpy_(&i__1, &r__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
+ c__1);
+ i__1 = k - 1;
+ i__2 = *n - *m;
+ r__1 = -tau[k];
+ sger_(&i__1, &i__2, &r__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
+, lda, &a[m1 * a_dim1 + 1], lda);
+ }
+/* L20: */
+ }
+ }
+
+ return 0;
+
+/* End of STZRQF */
+
+} /* stzrqf_ */