diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/strevc.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/strevc.c')
-rw-r--r-- | contrib/libs/clapack/strevc.c | 1223 |
1 files changed, 1223 insertions, 0 deletions
diff --git a/contrib/libs/clapack/strevc.c b/contrib/libs/clapack/strevc.c new file mode 100644 index 0000000000..1c95a80d61 --- /dev/null +++ b/contrib/libs/clapack/strevc.c @@ -0,0 +1,1223 @@ +/* strevc.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static logical c_false = FALSE_; +static integer c__1 = 1; +static real c_b22 = 1.f; +static real c_b25 = 0.f; +static integer c__2 = 2; +static logical c_true = TRUE_; + +/* Subroutine */ int strevc_(char *side, char *howmny, logical *select, + integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr, + integer *ldvr, integer *mm, integer *m, real *work, integer *info) +{ + /* System generated locals */ + integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, + i__2, i__3; + real r__1, r__2, r__3, r__4; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, k; + real x[4] /* was [2][2] */; + integer j1, j2, n2, ii, ki, ip, is; + real wi, wr, rec, ulp, beta, emax; + logical pair, allv; + integer ierr; + real unfl, ovfl, smin; + extern doublereal sdot_(integer *, real *, integer *, real *, integer *); + logical over; + real vmax; + integer jnxt; + real scale; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + real remax; + logical leftv; + extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, + real *, integer *, real *, integer *, real *, real *, integer *); + logical bothv; + real vcrit; + logical somev; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *); + real xnorm; + extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, + real *, integer *), slaln2_(logical *, integer *, integer *, real + *, real *, real *, integer *, real *, real *, real *, integer *, + real *, real *, real *, integer *, real *, real *, integer *), + slabad_(real *, real *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + real bignum; + extern integer isamax_(integer *, real *, integer *); + logical rightv; + real smlnum; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* STREVC computes some or all of the right and/or left eigenvectors of */ +/* a real upper quasi-triangular matrix T. */ +/* Matrices of this type are produced by the Schur factorization of */ +/* a real general matrix: A = Q*T*Q**T, as computed by SHSEQR. */ + +/* The right eigenvector x and the left eigenvector y of T corresponding */ +/* to an eigenvalue w are defined by: */ + +/* T*x = w*x, (y**H)*T = w*(y**H) */ + +/* where y**H denotes the conjugate transpose of y. */ +/* The eigenvalues are not input to this routine, but are read directly */ +/* from the diagonal blocks of T. */ + +/* This routine returns the matrices X and/or Y of right and left */ +/* eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */ +/* input matrix. If Q is the orthogonal factor that reduces a matrix */ +/* A to Schur form T, then Q*X and Q*Y are the matrices of right and */ +/* left eigenvectors of A. */ + +/* Arguments */ +/* ========= */ + +/* SIDE (input) CHARACTER*1 */ +/* = 'R': compute right eigenvectors only; */ +/* = 'L': compute left eigenvectors only; */ +/* = 'B': compute both right and left eigenvectors. */ + +/* HOWMNY (input) CHARACTER*1 */ +/* = 'A': compute all right and/or left eigenvectors; */ +/* = 'B': compute all right and/or left eigenvectors, */ +/* backtransformed by the matrices in VR and/or VL; */ +/* = 'S': compute selected right and/or left eigenvectors, */ +/* as indicated by the logical array SELECT. */ + +/* SELECT (input/output) LOGICAL array, dimension (N) */ +/* If HOWMNY = 'S', SELECT specifies the eigenvectors to be */ +/* computed. */ +/* If w(j) is a real eigenvalue, the corresponding real */ +/* eigenvector is computed if SELECT(j) is .TRUE.. */ +/* If w(j) and w(j+1) are the real and imaginary parts of a */ +/* complex eigenvalue, the corresponding complex eigenvector is */ +/* computed if either SELECT(j) or SELECT(j+1) is .TRUE., and */ +/* on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to */ +/* .FALSE.. */ +/* Not referenced if HOWMNY = 'A' or 'B'. */ + +/* N (input) INTEGER */ +/* The order of the matrix T. N >= 0. */ + +/* T (input) REAL array, dimension (LDT,N) */ +/* The upper quasi-triangular matrix T in Schur canonical form. */ + +/* LDT (input) INTEGER */ +/* The leading dimension of the array T. LDT >= max(1,N). */ + +/* VL (input/output) REAL array, dimension (LDVL,MM) */ +/* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */ +/* contain an N-by-N matrix Q (usually the orthogonal matrix Q */ +/* of Schur vectors returned by SHSEQR). */ +/* On exit, if SIDE = 'L' or 'B', VL contains: */ +/* if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */ +/* if HOWMNY = 'B', the matrix Q*Y; */ +/* if HOWMNY = 'S', the left eigenvectors of T specified by */ +/* SELECT, stored consecutively in the columns */ +/* of VL, in the same order as their */ +/* eigenvalues. */ +/* A complex eigenvector corresponding to a complex eigenvalue */ +/* is stored in two consecutive columns, the first holding the */ +/* real part, and the second the imaginary part. */ +/* Not referenced if SIDE = 'R'. */ + +/* LDVL (input) INTEGER */ +/* The leading dimension of the array VL. LDVL >= 1, and if */ +/* SIDE = 'L' or 'B', LDVL >= N. */ + +/* VR (input/output) REAL array, dimension (LDVR,MM) */ +/* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */ +/* contain an N-by-N matrix Q (usually the orthogonal matrix Q */ +/* of Schur vectors returned by SHSEQR). */ +/* On exit, if SIDE = 'R' or 'B', VR contains: */ +/* if HOWMNY = 'A', the matrix X of right eigenvectors of T; */ +/* if HOWMNY = 'B', the matrix Q*X; */ +/* if HOWMNY = 'S', the right eigenvectors of T specified by */ +/* SELECT, stored consecutively in the columns */ +/* of VR, in the same order as their */ +/* eigenvalues. */ +/* A complex eigenvector corresponding to a complex eigenvalue */ +/* is stored in two consecutive columns, the first holding the */ +/* real part and the second the imaginary part. */ +/* Not referenced if SIDE = 'L'. */ + +/* LDVR (input) INTEGER */ +/* The leading dimension of the array VR. LDVR >= 1, and if */ +/* SIDE = 'R' or 'B', LDVR >= N. */ + +/* MM (input) INTEGER */ +/* The number of columns in the arrays VL and/or VR. MM >= M. */ + +/* M (output) INTEGER */ +/* The number of columns in the arrays VL and/or VR actually */ +/* used to store the eigenvectors. */ +/* If HOWMNY = 'A' or 'B', M is set to N. */ +/* Each selected real eigenvector occupies one column and each */ +/* selected complex eigenvector occupies two columns. */ + +/* WORK (workspace) REAL array, dimension (3*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Further Details */ +/* =============== */ + +/* The algorithm used in this program is basically backward (forward) */ +/* substitution, with scaling to make the the code robust against */ +/* possible overflow. */ + +/* Each eigenvector is normalized so that the element of largest */ +/* magnitude has magnitude 1; here the magnitude of a complex number */ +/* (x,y) is taken to be |x| + |y|. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and test the input parameters */ + + /* Parameter adjustments */ + --select; + t_dim1 = *ldt; + t_offset = 1 + t_dim1; + t -= t_offset; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --work; + + /* Function Body */ + bothv = lsame_(side, "B"); + rightv = lsame_(side, "R") || bothv; + leftv = lsame_(side, "L") || bothv; + + allv = lsame_(howmny, "A"); + over = lsame_(howmny, "B"); + somev = lsame_(howmny, "S"); + + *info = 0; + if (! rightv && ! leftv) { + *info = -1; + } else if (! allv && ! over && ! somev) { + *info = -2; + } else if (*n < 0) { + *info = -4; + } else if (*ldt < max(1,*n)) { + *info = -6; + } else if (*ldvl < 1 || leftv && *ldvl < *n) { + *info = -8; + } else if (*ldvr < 1 || rightv && *ldvr < *n) { + *info = -10; + } else { + +/* Set M to the number of columns required to store the selected */ +/* eigenvectors, standardize the array SELECT if necessary, and */ +/* test MM. */ + + if (somev) { + *m = 0; + pair = FALSE_; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (pair) { + pair = FALSE_; + select[j] = FALSE_; + } else { + if (j < *n) { + if (t[j + 1 + j * t_dim1] == 0.f) { + if (select[j]) { + ++(*m); + } + } else { + pair = TRUE_; + if (select[j] || select[j + 1]) { + select[j] = TRUE_; + *m += 2; + } + } + } else { + if (select[*n]) { + ++(*m); + } + } + } +/* L10: */ + } + } else { + *m = *n; + } + + if (*mm < *m) { + *info = -11; + } + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("STREVC", &i__1); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* Set the constants to control overflow. */ + + unfl = slamch_("Safe minimum"); + ovfl = 1.f / unfl; + slabad_(&unfl, &ovfl); + ulp = slamch_("Precision"); + smlnum = unfl * (*n / ulp); + bignum = (1.f - ulp) / smlnum; + +/* Compute 1-norm of each column of strictly upper triangular */ +/* part of T to control overflow in triangular solver. */ + + work[1] = 0.f; + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + work[j] = 0.f; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + work[j] += (r__1 = t[i__ + j * t_dim1], dabs(r__1)); +/* L20: */ + } +/* L30: */ + } + +/* Index IP is used to specify the real or complex eigenvalue: */ +/* IP = 0, real eigenvalue, */ +/* 1, first of conjugate complex pair: (wr,wi) */ +/* -1, second of conjugate complex pair: (wr,wi) */ + + n2 = *n << 1; + + if (rightv) { + +/* Compute right eigenvectors. */ + + ip = 0; + is = *m; + for (ki = *n; ki >= 1; --ki) { + + if (ip == 1) { + goto L130; + } + if (ki == 1) { + goto L40; + } + if (t[ki + (ki - 1) * t_dim1] == 0.f) { + goto L40; + } + ip = -1; + +L40: + if (somev) { + if (ip == 0) { + if (! select[ki]) { + goto L130; + } + } else { + if (! select[ki - 1]) { + goto L130; + } + } + } + +/* Compute the KI-th eigenvalue (WR,WI). */ + + wr = t[ki + ki * t_dim1]; + wi = 0.f; + if (ip != 0) { + wi = sqrt((r__1 = t[ki + (ki - 1) * t_dim1], dabs(r__1))) * + sqrt((r__2 = t[ki - 1 + ki * t_dim1], dabs(r__2))); + } +/* Computing MAX */ + r__1 = ulp * (dabs(wr) + dabs(wi)); + smin = dmax(r__1,smlnum); + + if (ip == 0) { + +/* Real right eigenvector */ + + work[ki + *n] = 1.f; + +/* Form right-hand side */ + + i__1 = ki - 1; + for (k = 1; k <= i__1; ++k) { + work[k + *n] = -t[k + ki * t_dim1]; +/* L50: */ + } + +/* Solve the upper quasi-triangular system: */ +/* (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK. */ + + jnxt = ki - 1; + for (j = ki - 1; j >= 1; --j) { + if (j > jnxt) { + goto L60; + } + j1 = j; + j2 = j; + jnxt = j - 1; + if (j > 1) { + if (t[j + (j - 1) * t_dim1] != 0.f) { + j1 = j - 1; + jnxt = j - 2; + } + } + + if (j1 == j2) { + +/* 1-by-1 diagonal block */ + + slaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j + + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * + n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, + &ierr); + +/* Scale X(1,1) to avoid overflow when updating */ +/* the right-hand side. */ + + if (xnorm > 1.f) { + if (work[j] > bignum / xnorm) { + x[0] /= xnorm; + scale /= xnorm; + } + } + +/* Scale if necessary */ + + if (scale != 1.f) { + sscal_(&ki, &scale, &work[*n + 1], &c__1); + } + work[j + *n] = x[0]; + +/* Update right-hand side */ + + i__1 = j - 1; + r__1 = -x[0]; + saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[ + *n + 1], &c__1); + + } else { + +/* 2-by-2 diagonal block */ + + slaln2_(&c_false, &c__2, &c__1, &smin, &c_b22, &t[j - + 1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, & + work[j - 1 + *n], n, &wr, &c_b25, x, &c__2, & + scale, &xnorm, &ierr); + +/* Scale X(1,1) and X(2,1) to avoid overflow when */ +/* updating the right-hand side. */ + + if (xnorm > 1.f) { +/* Computing MAX */ + r__1 = work[j - 1], r__2 = work[j]; + beta = dmax(r__1,r__2); + if (beta > bignum / xnorm) { + x[0] /= xnorm; + x[1] /= xnorm; + scale /= xnorm; + } + } + +/* Scale if necessary */ + + if (scale != 1.f) { + sscal_(&ki, &scale, &work[*n + 1], &c__1); + } + work[j - 1 + *n] = x[0]; + work[j + *n] = x[1]; + +/* Update right-hand side */ + + i__1 = j - 2; + r__1 = -x[0]; + saxpy_(&i__1, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1, + &work[*n + 1], &c__1); + i__1 = j - 2; + r__1 = -x[1]; + saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[ + *n + 1], &c__1); + } +L60: + ; + } + +/* Copy the vector x or Q*x to VR and normalize. */ + + if (! over) { + scopy_(&ki, &work[*n + 1], &c__1, &vr[is * vr_dim1 + 1], & + c__1); + + ii = isamax_(&ki, &vr[is * vr_dim1 + 1], &c__1); + remax = 1.f / (r__1 = vr[ii + is * vr_dim1], dabs(r__1)); + sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1); + + i__1 = *n; + for (k = ki + 1; k <= i__1; ++k) { + vr[k + is * vr_dim1] = 0.f; +/* L70: */ + } + } else { + if (ki > 1) { + i__1 = ki - 1; + sgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, & + work[*n + 1], &c__1, &work[ki + *n], &vr[ki * + vr_dim1 + 1], &c__1); + } + + ii = isamax_(n, &vr[ki * vr_dim1 + 1], &c__1); + remax = 1.f / (r__1 = vr[ii + ki * vr_dim1], dabs(r__1)); + sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1); + } + + } else { + +/* Complex right eigenvector. */ + +/* Initial solve */ +/* [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0. */ +/* [ (T(KI,KI-1) T(KI,KI) ) ] */ + + if ((r__1 = t[ki - 1 + ki * t_dim1], dabs(r__1)) >= (r__2 = t[ + ki + (ki - 1) * t_dim1], dabs(r__2))) { + work[ki - 1 + *n] = 1.f; + work[ki + n2] = wi / t[ki - 1 + ki * t_dim1]; + } else { + work[ki - 1 + *n] = -wi / t[ki + (ki - 1) * t_dim1]; + work[ki + n2] = 1.f; + } + work[ki + *n] = 0.f; + work[ki - 1 + n2] = 0.f; + +/* Form right-hand side */ + + i__1 = ki - 2; + for (k = 1; k <= i__1; ++k) { + work[k + *n] = -work[ki - 1 + *n] * t[k + (ki - 1) * + t_dim1]; + work[k + n2] = -work[ki + n2] * t[k + ki * t_dim1]; +/* L80: */ + } + +/* Solve upper quasi-triangular system: */ +/* (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2) */ + + jnxt = ki - 2; + for (j = ki - 2; j >= 1; --j) { + if (j > jnxt) { + goto L90; + } + j1 = j; + j2 = j; + jnxt = j - 1; + if (j > 1) { + if (t[j + (j - 1) * t_dim1] != 0.f) { + j1 = j - 1; + jnxt = j - 2; + } + } + + if (j1 == j2) { + +/* 1-by-1 diagonal block */ + + slaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j + + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * + n], n, &wr, &wi, x, &c__2, &scale, &xnorm, & + ierr); + +/* Scale X(1,1) and X(1,2) to avoid overflow when */ +/* updating the right-hand side. */ + + if (xnorm > 1.f) { + if (work[j] > bignum / xnorm) { + x[0] /= xnorm; + x[2] /= xnorm; + scale /= xnorm; + } + } + +/* Scale if necessary */ + + if (scale != 1.f) { + sscal_(&ki, &scale, &work[*n + 1], &c__1); + sscal_(&ki, &scale, &work[n2 + 1], &c__1); + } + work[j + *n] = x[0]; + work[j + n2] = x[2]; + +/* Update the right-hand side */ + + i__1 = j - 1; + r__1 = -x[0]; + saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[ + *n + 1], &c__1); + i__1 = j - 1; + r__1 = -x[2]; + saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[ + n2 + 1], &c__1); + + } else { + +/* 2-by-2 diagonal block */ + + slaln2_(&c_false, &c__2, &c__2, &smin, &c_b22, &t[j - + 1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, & + work[j - 1 + *n], n, &wr, &wi, x, &c__2, & + scale, &xnorm, &ierr); + +/* Scale X to avoid overflow when updating */ +/* the right-hand side. */ + + if (xnorm > 1.f) { +/* Computing MAX */ + r__1 = work[j - 1], r__2 = work[j]; + beta = dmax(r__1,r__2); + if (beta > bignum / xnorm) { + rec = 1.f / xnorm; + x[0] *= rec; + x[2] *= rec; + x[1] *= rec; + x[3] *= rec; + scale *= rec; + } + } + +/* Scale if necessary */ + + if (scale != 1.f) { + sscal_(&ki, &scale, &work[*n + 1], &c__1); + sscal_(&ki, &scale, &work[n2 + 1], &c__1); + } + work[j - 1 + *n] = x[0]; + work[j + *n] = x[1]; + work[j - 1 + n2] = x[2]; + work[j + n2] = x[3]; + +/* Update the right-hand side */ + + i__1 = j - 2; + r__1 = -x[0]; + saxpy_(&i__1, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1, + &work[*n + 1], &c__1); + i__1 = j - 2; + r__1 = -x[1]; + saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[ + *n + 1], &c__1); + i__1 = j - 2; + r__1 = -x[2]; + saxpy_(&i__1, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1, + &work[n2 + 1], &c__1); + i__1 = j - 2; + r__1 = -x[3]; + saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[ + n2 + 1], &c__1); + } +L90: + ; + } + +/* Copy the vector x or Q*x to VR and normalize. */ + + if (! over) { + scopy_(&ki, &work[*n + 1], &c__1, &vr[(is - 1) * vr_dim1 + + 1], &c__1); + scopy_(&ki, &work[n2 + 1], &c__1, &vr[is * vr_dim1 + 1], & + c__1); + + emax = 0.f; + i__1 = ki; + for (k = 1; k <= i__1; ++k) { +/* Computing MAX */ + r__3 = emax, r__4 = (r__1 = vr[k + (is - 1) * vr_dim1] + , dabs(r__1)) + (r__2 = vr[k + is * vr_dim1], + dabs(r__2)); + emax = dmax(r__3,r__4); +/* L100: */ + } + + remax = 1.f / emax; + sscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1); + sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1); + + i__1 = *n; + for (k = ki + 1; k <= i__1; ++k) { + vr[k + (is - 1) * vr_dim1] = 0.f; + vr[k + is * vr_dim1] = 0.f; +/* L110: */ + } + + } else { + + if (ki > 2) { + i__1 = ki - 2; + sgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, & + work[*n + 1], &c__1, &work[ki - 1 + *n], &vr[( + ki - 1) * vr_dim1 + 1], &c__1); + i__1 = ki - 2; + sgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, & + work[n2 + 1], &c__1, &work[ki + n2], &vr[ki * + vr_dim1 + 1], &c__1); + } else { + sscal_(n, &work[ki - 1 + *n], &vr[(ki - 1) * vr_dim1 + + 1], &c__1); + sscal_(n, &work[ki + n2], &vr[ki * vr_dim1 + 1], & + c__1); + } + + emax = 0.f; + i__1 = *n; + for (k = 1; k <= i__1; ++k) { +/* Computing MAX */ + r__3 = emax, r__4 = (r__1 = vr[k + (ki - 1) * vr_dim1] + , dabs(r__1)) + (r__2 = vr[k + ki * vr_dim1], + dabs(r__2)); + emax = dmax(r__3,r__4); +/* L120: */ + } + remax = 1.f / emax; + sscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1); + sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1); + } + } + + --is; + if (ip != 0) { + --is; + } +L130: + if (ip == 1) { + ip = 0; + } + if (ip == -1) { + ip = 1; + } +/* L140: */ + } + } + + if (leftv) { + +/* Compute left eigenvectors. */ + + ip = 0; + is = 1; + i__1 = *n; + for (ki = 1; ki <= i__1; ++ki) { + + if (ip == -1) { + goto L250; + } + if (ki == *n) { + goto L150; + } + if (t[ki + 1 + ki * t_dim1] == 0.f) { + goto L150; + } + ip = 1; + +L150: + if (somev) { + if (! select[ki]) { + goto L250; + } + } + +/* Compute the KI-th eigenvalue (WR,WI). */ + + wr = t[ki + ki * t_dim1]; + wi = 0.f; + if (ip != 0) { + wi = sqrt((r__1 = t[ki + (ki + 1) * t_dim1], dabs(r__1))) * + sqrt((r__2 = t[ki + 1 + ki * t_dim1], dabs(r__2))); + } +/* Computing MAX */ + r__1 = ulp * (dabs(wr) + dabs(wi)); + smin = dmax(r__1,smlnum); + + if (ip == 0) { + +/* Real left eigenvector. */ + + work[ki + *n] = 1.f; + +/* Form right-hand side */ + + i__2 = *n; + for (k = ki + 1; k <= i__2; ++k) { + work[k + *n] = -t[ki + k * t_dim1]; +/* L160: */ + } + +/* Solve the quasi-triangular system: */ +/* (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK */ + + vmax = 1.f; + vcrit = bignum; + + jnxt = ki + 1; + i__2 = *n; + for (j = ki + 1; j <= i__2; ++j) { + if (j < jnxt) { + goto L170; + } + j1 = j; + j2 = j; + jnxt = j + 1; + if (j < *n) { + if (t[j + 1 + j * t_dim1] != 0.f) { + j2 = j + 1; + jnxt = j + 2; + } + } + + if (j1 == j2) { + +/* 1-by-1 diagonal block */ + +/* Scale if necessary to avoid overflow when forming */ +/* the right-hand side. */ + + if (work[j] > vcrit) { + rec = 1.f / vmax; + i__3 = *n - ki + 1; + sscal_(&i__3, &rec, &work[ki + *n], &c__1); + vmax = 1.f; + vcrit = bignum; + } + + i__3 = j - ki - 1; + work[j + *n] -= sdot_(&i__3, &t[ki + 1 + j * t_dim1], + &c__1, &work[ki + 1 + *n], &c__1); + +/* Solve (T(J,J)-WR)'*X = WORK */ + + slaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j + + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * + n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, + &ierr); + +/* Scale if necessary */ + + if (scale != 1.f) { + i__3 = *n - ki + 1; + sscal_(&i__3, &scale, &work[ki + *n], &c__1); + } + work[j + *n] = x[0]; +/* Computing MAX */ + r__2 = (r__1 = work[j + *n], dabs(r__1)); + vmax = dmax(r__2,vmax); + vcrit = bignum / vmax; + + } else { + +/* 2-by-2 diagonal block */ + +/* Scale if necessary to avoid overflow when forming */ +/* the right-hand side. */ + +/* Computing MAX */ + r__1 = work[j], r__2 = work[j + 1]; + beta = dmax(r__1,r__2); + if (beta > vcrit) { + rec = 1.f / vmax; + i__3 = *n - ki + 1; + sscal_(&i__3, &rec, &work[ki + *n], &c__1); + vmax = 1.f; + vcrit = bignum; + } + + i__3 = j - ki - 1; + work[j + *n] -= sdot_(&i__3, &t[ki + 1 + j * t_dim1], + &c__1, &work[ki + 1 + *n], &c__1); + + i__3 = j - ki - 1; + work[j + 1 + *n] -= sdot_(&i__3, &t[ki + 1 + (j + 1) * + t_dim1], &c__1, &work[ki + 1 + *n], &c__1); + +/* Solve */ +/* [T(J,J)-WR T(J,J+1) ]'* X = SCALE*( WORK1 ) */ +/* [T(J+1,J) T(J+1,J+1)-WR] ( WORK2 ) */ + + slaln2_(&c_true, &c__2, &c__1, &smin, &c_b22, &t[j + + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * + n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, + &ierr); + +/* Scale if necessary */ + + if (scale != 1.f) { + i__3 = *n - ki + 1; + sscal_(&i__3, &scale, &work[ki + *n], &c__1); + } + work[j + *n] = x[0]; + work[j + 1 + *n] = x[1]; + +/* Computing MAX */ + r__3 = (r__1 = work[j + *n], dabs(r__1)), r__4 = ( + r__2 = work[j + 1 + *n], dabs(r__2)), r__3 = + max(r__3,r__4); + vmax = dmax(r__3,vmax); + vcrit = bignum / vmax; + + } +L170: + ; + } + +/* Copy the vector x or Q*x to VL and normalize. */ + + if (! over) { + i__2 = *n - ki + 1; + scopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is * + vl_dim1], &c__1); + + i__2 = *n - ki + 1; + ii = isamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - + 1; + remax = 1.f / (r__1 = vl[ii + is * vl_dim1], dabs(r__1)); + i__2 = *n - ki + 1; + sscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1); + + i__2 = ki - 1; + for (k = 1; k <= i__2; ++k) { + vl[k + is * vl_dim1] = 0.f; +/* L180: */ + } + + } else { + + if (ki < *n) { + i__2 = *n - ki; + sgemv_("N", n, &i__2, &c_b22, &vl[(ki + 1) * vl_dim1 + + 1], ldvl, &work[ki + 1 + *n], &c__1, &work[ + ki + *n], &vl[ki * vl_dim1 + 1], &c__1); + } + + ii = isamax_(n, &vl[ki * vl_dim1 + 1], &c__1); + remax = 1.f / (r__1 = vl[ii + ki * vl_dim1], dabs(r__1)); + sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1); + + } + + } else { + +/* Complex left eigenvector. */ + +/* Initial solve: */ +/* ((T(KI,KI) T(KI,KI+1) )' - (WR - I* WI))*X = 0. */ +/* ((T(KI+1,KI) T(KI+1,KI+1)) ) */ + + if ((r__1 = t[ki + (ki + 1) * t_dim1], dabs(r__1)) >= (r__2 = + t[ki + 1 + ki * t_dim1], dabs(r__2))) { + work[ki + *n] = wi / t[ki + (ki + 1) * t_dim1]; + work[ki + 1 + n2] = 1.f; + } else { + work[ki + *n] = 1.f; + work[ki + 1 + n2] = -wi / t[ki + 1 + ki * t_dim1]; + } + work[ki + 1 + *n] = 0.f; + work[ki + n2] = 0.f; + +/* Form right-hand side */ + + i__2 = *n; + for (k = ki + 2; k <= i__2; ++k) { + work[k + *n] = -work[ki + *n] * t[ki + k * t_dim1]; + work[k + n2] = -work[ki + 1 + n2] * t[ki + 1 + k * t_dim1] + ; +/* L190: */ + } + +/* Solve complex quasi-triangular system: */ +/* ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2 */ + + vmax = 1.f; + vcrit = bignum; + + jnxt = ki + 2; + i__2 = *n; + for (j = ki + 2; j <= i__2; ++j) { + if (j < jnxt) { + goto L200; + } + j1 = j; + j2 = j; + jnxt = j + 1; + if (j < *n) { + if (t[j + 1 + j * t_dim1] != 0.f) { + j2 = j + 1; + jnxt = j + 2; + } + } + + if (j1 == j2) { + +/* 1-by-1 diagonal block */ + +/* Scale if necessary to avoid overflow when */ +/* forming the right-hand side elements. */ + + if (work[j] > vcrit) { + rec = 1.f / vmax; + i__3 = *n - ki + 1; + sscal_(&i__3, &rec, &work[ki + *n], &c__1); + i__3 = *n - ki + 1; + sscal_(&i__3, &rec, &work[ki + n2], &c__1); + vmax = 1.f; + vcrit = bignum; + } + + i__3 = j - ki - 2; + work[j + *n] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1], + &c__1, &work[ki + 2 + *n], &c__1); + i__3 = j - ki - 2; + work[j + n2] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1], + &c__1, &work[ki + 2 + n2], &c__1); + +/* Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2 */ + + r__1 = -wi; + slaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j + + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * + n], n, &wr, &r__1, x, &c__2, &scale, &xnorm, & + ierr); + +/* Scale if necessary */ + + if (scale != 1.f) { + i__3 = *n - ki + 1; + sscal_(&i__3, &scale, &work[ki + *n], &c__1); + i__3 = *n - ki + 1; + sscal_(&i__3, &scale, &work[ki + n2], &c__1); + } + work[j + *n] = x[0]; + work[j + n2] = x[2]; +/* Computing MAX */ + r__3 = (r__1 = work[j + *n], dabs(r__1)), r__4 = ( + r__2 = work[j + n2], dabs(r__2)), r__3 = max( + r__3,r__4); + vmax = dmax(r__3,vmax); + vcrit = bignum / vmax; + + } else { + +/* 2-by-2 diagonal block */ + +/* Scale if necessary to avoid overflow when forming */ +/* the right-hand side elements. */ + +/* Computing MAX */ + r__1 = work[j], r__2 = work[j + 1]; + beta = dmax(r__1,r__2); + if (beta > vcrit) { + rec = 1.f / vmax; + i__3 = *n - ki + 1; + sscal_(&i__3, &rec, &work[ki + *n], &c__1); + i__3 = *n - ki + 1; + sscal_(&i__3, &rec, &work[ki + n2], &c__1); + vmax = 1.f; + vcrit = bignum; + } + + i__3 = j - ki - 2; + work[j + *n] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1], + &c__1, &work[ki + 2 + *n], &c__1); + + i__3 = j - ki - 2; + work[j + n2] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1], + &c__1, &work[ki + 2 + n2], &c__1); + + i__3 = j - ki - 2; + work[j + 1 + *n] -= sdot_(&i__3, &t[ki + 2 + (j + 1) * + t_dim1], &c__1, &work[ki + 2 + *n], &c__1); + + i__3 = j - ki - 2; + work[j + 1 + n2] -= sdot_(&i__3, &t[ki + 2 + (j + 1) * + t_dim1], &c__1, &work[ki + 2 + n2], &c__1); + +/* Solve 2-by-2 complex linear equation */ +/* ([T(j,j) T(j,j+1) ]'-(wr-i*wi)*I)*X = SCALE*B */ +/* ([T(j+1,j) T(j+1,j+1)] ) */ + + r__1 = -wi; + slaln2_(&c_true, &c__2, &c__2, &smin, &c_b22, &t[j + + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * + n], n, &wr, &r__1, x, &c__2, &scale, &xnorm, & + ierr); + +/* Scale if necessary */ + + if (scale != 1.f) { + i__3 = *n - ki + 1; + sscal_(&i__3, &scale, &work[ki + *n], &c__1); + i__3 = *n - ki + 1; + sscal_(&i__3, &scale, &work[ki + n2], &c__1); + } + work[j + *n] = x[0]; + work[j + n2] = x[2]; + work[j + 1 + *n] = x[1]; + work[j + 1 + n2] = x[3]; +/* Computing MAX */ + r__1 = dabs(x[0]), r__2 = dabs(x[2]), r__1 = max(r__1, + r__2), r__2 = dabs(x[1]), r__1 = max(r__1, + r__2), r__2 = dabs(x[3]), r__1 = max(r__1, + r__2); + vmax = dmax(r__1,vmax); + vcrit = bignum / vmax; + + } +L200: + ; + } + +/* Copy the vector x or Q*x to VL and normalize. */ + + if (! over) { + i__2 = *n - ki + 1; + scopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is * + vl_dim1], &c__1); + i__2 = *n - ki + 1; + scopy_(&i__2, &work[ki + n2], &c__1, &vl[ki + (is + 1) * + vl_dim1], &c__1); + + emax = 0.f; + i__2 = *n; + for (k = ki; k <= i__2; ++k) { +/* Computing MAX */ + r__3 = emax, r__4 = (r__1 = vl[k + is * vl_dim1], + dabs(r__1)) + (r__2 = vl[k + (is + 1) * + vl_dim1], dabs(r__2)); + emax = dmax(r__3,r__4); +/* L220: */ + } + remax = 1.f / emax; + i__2 = *n - ki + 1; + sscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1); + i__2 = *n - ki + 1; + sscal_(&i__2, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1) + ; + + i__2 = ki - 1; + for (k = 1; k <= i__2; ++k) { + vl[k + is * vl_dim1] = 0.f; + vl[k + (is + 1) * vl_dim1] = 0.f; +/* L230: */ + } + } else { + if (ki < *n - 1) { + i__2 = *n - ki - 1; + sgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1 + + 1], ldvl, &work[ki + 2 + *n], &c__1, &work[ + ki + *n], &vl[ki * vl_dim1 + 1], &c__1); + i__2 = *n - ki - 1; + sgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1 + + 1], ldvl, &work[ki + 2 + n2], &c__1, &work[ + ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], & + c__1); + } else { + sscal_(n, &work[ki + *n], &vl[ki * vl_dim1 + 1], & + c__1); + sscal_(n, &work[ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + + 1], &c__1); + } + + emax = 0.f; + i__2 = *n; + for (k = 1; k <= i__2; ++k) { +/* Computing MAX */ + r__3 = emax, r__4 = (r__1 = vl[k + ki * vl_dim1], + dabs(r__1)) + (r__2 = vl[k + (ki + 1) * + vl_dim1], dabs(r__2)); + emax = dmax(r__3,r__4); +/* L240: */ + } + remax = 1.f / emax; + sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1); + sscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1); + + } + + } + + ++is; + if (ip != 0) { + ++is; + } +L250: + if (ip == -1) { + ip = 0; + } + if (ip == 1) { + ip = -1; + } + +/* L260: */ + } + + } + + return 0; + +/* End of STREVC */ + +} /* strevc_ */ |