aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/stgsy2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stgsy2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stgsy2.c')
-rw-r--r--contrib/libs/clapack/stgsy2.c1106
1 files changed, 1106 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stgsy2.c b/contrib/libs/clapack/stgsy2.c
new file mode 100644
index 0000000000..4c3cd044a5
--- /dev/null
+++ b/contrib/libs/clapack/stgsy2.c
@@ -0,0 +1,1106 @@
+/* stgsy2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__8 = 8;
+static integer c__1 = 1;
+static real c_b27 = -1.f;
+static real c_b42 = 1.f;
+static real c_b56 = 0.f;
+
+/* Subroutine */ int stgsy2_(char *trans, integer *ijob, integer *m, integer *
+ n, real *a, integer *lda, real *b, integer *ldb, real *c__, integer *
+ ldc, real *d__, integer *ldd, real *e, integer *lde, real *f, integer
+ *ldf, real *scale, real *rdsum, real *rdscal, integer *iwork, integer
+ *pq, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
+ d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ integer i__, j, k, p, q;
+ real z__[64] /* was [8][8] */;
+ integer ie, je, mb, nb, ii, jj, is, js;
+ real rhs[8];
+ integer isp1, jsp1;
+ extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
+ integer *, real *, integer *, real *, integer *);
+ integer ierr, zdim, ipiv[8], jpiv[8];
+ real alpha;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
+ sgemm_(char *, char *, integer *, integer *, integer *, real *,
+ real *, integer *, real *, integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *,
+ real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *),
+ saxpy_(integer *, real *, real *, integer *, real *, integer *),
+ sgesc2_(integer *, real *, integer *, real *, integer *, integer *
+, real *), sgetc2_(integer *, real *, integer *, integer *,
+ integer *, integer *);
+ real scaloc;
+ extern /* Subroutine */ int slatdf_(integer *, integer *, real *, integer
+ *, real *, real *, real *, integer *, integer *), xerbla_(char *,
+ integer *), slaset_(char *, integer *, integer *, real *,
+ real *, real *, integer *);
+ logical notran;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* January 2007 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* STGSY2 solves the generalized Sylvester equation: */
+
+/* A * R - L * B = scale * C (1) */
+/* D * R - L * E = scale * F, */
+
+/* using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices, */
+/* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */
+/* N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E) */
+/* must be in generalized Schur canonical form, i.e. A, B are upper */
+/* quasi triangular and D, E are upper triangular. The solution (R, L) */
+/* overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor */
+/* chosen to avoid overflow. */
+
+/* In matrix notation solving equation (1) corresponds to solve */
+/* Z*x = scale*b, where Z is defined as */
+
+/* Z = [ kron(In, A) -kron(B', Im) ] (2) */
+/* [ kron(In, D) -kron(E', Im) ], */
+
+/* Ik is the identity matrix of size k and X' is the transpose of X. */
+/* kron(X, Y) is the Kronecker product between the matrices X and Y. */
+/* In the process of solving (1), we solve a number of such systems */
+/* where Dim(In), Dim(In) = 1 or 2. */
+
+/* If TRANS = 'T', solve the transposed system Z'*y = scale*b for y, */
+/* which is equivalent to solve for R and L in */
+
+/* A' * R + D' * L = scale * C (3) */
+/* R * B' + L * E' = scale * -F */
+
+/* This case is used to compute an estimate of Dif[(A, D), (B, E)] = */
+/* sigma_min(Z) using reverse communicaton with SLACON. */
+
+/* STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL */
+/* of an upper bound on the separation between to matrix pairs. Then */
+/* the input (A, D), (B, E) are sub-pencils of the matrix pair in */
+/* STGSYL. See STGSYL for details. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANS (input) CHARACTER*1 */
+/* = 'N', solve the generalized Sylvester equation (1). */
+/* = 'T': solve the 'transposed' system (3). */
+
+/* IJOB (input) INTEGER */
+/* Specifies what kind of functionality to be performed. */
+/* = 0: solve (1) only. */
+/* = 1: A contribution from this subsystem to a Frobenius */
+/* norm-based estimate of the separation between two matrix */
+/* pairs is computed. (look ahead strategy is used). */
+/* = 2: A contribution from this subsystem to a Frobenius */
+/* norm-based estimate of the separation between two matrix */
+/* pairs is computed. (SGECON on sub-systems is used.) */
+/* Not referenced if TRANS = 'T'. */
+
+/* M (input) INTEGER */
+/* On entry, M specifies the order of A and D, and the row */
+/* dimension of C, F, R and L. */
+
+/* N (input) INTEGER */
+/* On entry, N specifies the order of B and E, and the column */
+/* dimension of C, F, R and L. */
+
+/* A (input) REAL array, dimension (LDA, M) */
+/* On entry, A contains an upper quasi triangular matrix. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the matrix A. LDA >= max(1, M). */
+
+/* B (input) REAL array, dimension (LDB, N) */
+/* On entry, B contains an upper quasi triangular matrix. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the matrix B. LDB >= max(1, N). */
+
+/* C (input/output) REAL array, dimension (LDC, N) */
+/* On entry, C contains the right-hand-side of the first matrix */
+/* equation in (1). */
+/* On exit, if IJOB = 0, C has been overwritten by the */
+/* solution R. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the matrix C. LDC >= max(1, M). */
+
+/* D (input) REAL array, dimension (LDD, M) */
+/* On entry, D contains an upper triangular matrix. */
+
+/* LDD (input) INTEGER */
+/* The leading dimension of the matrix D. LDD >= max(1, M). */
+
+/* E (input) REAL array, dimension (LDE, N) */
+/* On entry, E contains an upper triangular matrix. */
+
+/* LDE (input) INTEGER */
+/* The leading dimension of the matrix E. LDE >= max(1, N). */
+
+/* F (input/output) REAL array, dimension (LDF, N) */
+/* On entry, F contains the right-hand-side of the second matrix */
+/* equation in (1). */
+/* On exit, if IJOB = 0, F has been overwritten by the */
+/* solution L. */
+
+/* LDF (input) INTEGER */
+/* The leading dimension of the matrix F. LDF >= max(1, M). */
+
+/* SCALE (output) REAL */
+/* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */
+/* R and L (C and F on entry) will hold the solutions to a */
+/* slightly perturbed system but the input matrices A, B, D and */
+/* E have not been changed. If SCALE = 0, R and L will hold the */
+/* solutions to the homogeneous system with C = F = 0. Normally, */
+/* SCALE = 1. */
+
+/* RDSUM (input/output) REAL */
+/* On entry, the sum of squares of computed contributions to */
+/* the Dif-estimate under computation by STGSYL, where the */
+/* scaling factor RDSCAL (see below) has been factored out. */
+/* On exit, the corresponding sum of squares updated with the */
+/* contributions from the current sub-system. */
+/* If TRANS = 'T' RDSUM is not touched. */
+/* NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL. */
+
+/* RDSCAL (input/output) REAL */
+/* On entry, scaling factor used to prevent overflow in RDSUM. */
+/* On exit, RDSCAL is updated w.r.t. the current contributions */
+/* in RDSUM. */
+/* If TRANS = 'T', RDSCAL is not touched. */
+/* NOTE: RDSCAL only makes sense when STGSY2 is called by */
+/* STGSYL. */
+
+/* IWORK (workspace) INTEGER array, dimension (M+N+2) */
+
+/* PQ (output) INTEGER */
+/* On exit, the number of subsystems (of size 2-by-2, 4-by-4 and */
+/* 8-by-8) solved by this routine. */
+
+/* INFO (output) INTEGER */
+/* On exit, if INFO is set to */
+/* =0: Successful exit */
+/* <0: If INFO = -i, the i-th argument had an illegal value. */
+/* >0: The matrix pairs (A, D) and (B, E) have common or very */
+/* close eigenvalues. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* ===================================================================== */
+/* Replaced various illegal calls to SCOPY by calls to SLASET. */
+/* Sven Hammarling, 27/5/02. */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test input parameters */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ d_dim1 = *ldd;
+ d_offset = 1 + d_dim1;
+ d__ -= d_offset;
+ e_dim1 = *lde;
+ e_offset = 1 + e_dim1;
+ e -= e_offset;
+ f_dim1 = *ldf;
+ f_offset = 1 + f_dim1;
+ f -= f_offset;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ ierr = 0;
+ notran = lsame_(trans, "N");
+ if (! notran && ! lsame_(trans, "T")) {
+ *info = -1;
+ } else if (notran) {
+ if (*ijob < 0 || *ijob > 2) {
+ *info = -2;
+ }
+ }
+ if (*info == 0) {
+ if (*m <= 0) {
+ *info = -3;
+ } else if (*n <= 0) {
+ *info = -4;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if (*ldd < max(1,*m)) {
+ *info = -12;
+ } else if (*lde < max(1,*n)) {
+ *info = -14;
+ } else if (*ldf < max(1,*m)) {
+ *info = -16;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("STGSY2", &i__1);
+ return 0;
+ }
+
+/* Determine block structure of A */
+
+ *pq = 0;
+ p = 0;
+ i__ = 1;
+L10:
+ if (i__ > *m) {
+ goto L20;
+ }
+ ++p;
+ iwork[p] = i__;
+ if (i__ == *m) {
+ goto L20;
+ }
+ if (a[i__ + 1 + i__ * a_dim1] != 0.f) {
+ i__ += 2;
+ } else {
+ ++i__;
+ }
+ goto L10;
+L20:
+ iwork[p + 1] = *m + 1;
+
+/* Determine block structure of B */
+
+ q = p + 1;
+ j = 1;
+L30:
+ if (j > *n) {
+ goto L40;
+ }
+ ++q;
+ iwork[q] = j;
+ if (j == *n) {
+ goto L40;
+ }
+ if (b[j + 1 + j * b_dim1] != 0.f) {
+ j += 2;
+ } else {
+ ++j;
+ }
+ goto L30;
+L40:
+ iwork[q + 1] = *n + 1;
+ *pq = p * (q - p - 1);
+
+ if (notran) {
+
+/* Solve (I, J) - subsystem */
+/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
+/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
+/* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q */
+
+ *scale = 1.f;
+ scaloc = 1.f;
+ i__1 = q;
+ for (j = p + 2; j <= i__1; ++j) {
+ js = iwork[j];
+ jsp1 = js + 1;
+ je = iwork[j + 1] - 1;
+ nb = je - js + 1;
+ for (i__ = p; i__ >= 1; --i__) {
+
+ is = iwork[i__];
+ isp1 = is + 1;
+ ie = iwork[i__ + 1] - 1;
+ mb = ie - is + 1;
+ zdim = mb * nb << 1;
+
+ if (mb == 1 && nb == 1) {
+
+/* Build a 2-by-2 system Z * x = RHS */
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = d__[is + is * d_dim1];
+ z__[8] = -b[js + js * b_dim1];
+ z__[9] = -e[js + js * e_dim1];
+
+/* Set up right hand side(s) */
+
+ rhs[0] = c__[is + js * c_dim1];
+ rhs[1] = f[is + js * f_dim1];
+
+/* Solve Z * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+
+ if (*ijob == 0) {
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
+ c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L50: */
+ }
+ *scale *= scaloc;
+ }
+ } else {
+ slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
+ ipiv, jpiv);
+ }
+
+/* Unpack solution vector(s) */
+
+ c__[is + js * c_dim1] = rhs[0];
+ f[is + js * f_dim1] = rhs[1];
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (i__ > 1) {
+ alpha = -rhs[0];
+ i__2 = is - 1;
+ saxpy_(&i__2, &alpha, &a[is * a_dim1 + 1], &c__1, &
+ c__[js * c_dim1 + 1], &c__1);
+ i__2 = is - 1;
+ saxpy_(&i__2, &alpha, &d__[is * d_dim1 + 1], &c__1, &
+ f[js * f_dim1 + 1], &c__1);
+ }
+ if (j < q) {
+ i__2 = *n - je;
+ saxpy_(&i__2, &rhs[1], &b[js + (je + 1) * b_dim1],
+ ldb, &c__[is + (je + 1) * c_dim1], ldc);
+ i__2 = *n - je;
+ saxpy_(&i__2, &rhs[1], &e[js + (je + 1) * e_dim1],
+ lde, &f[is + (je + 1) * f_dim1], ldf);
+ }
+
+ } else if (mb == 1 && nb == 2) {
+
+/* Build a 4-by-4 system Z * x = RHS */
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = 0.f;
+ z__[2] = d__[is + is * d_dim1];
+ z__[3] = 0.f;
+
+ z__[8] = 0.f;
+ z__[9] = a[is + is * a_dim1];
+ z__[10] = 0.f;
+ z__[11] = d__[is + is * d_dim1];
+
+ z__[16] = -b[js + js * b_dim1];
+ z__[17] = -b[js + jsp1 * b_dim1];
+ z__[18] = -e[js + js * e_dim1];
+ z__[19] = -e[js + jsp1 * e_dim1];
+
+ z__[24] = -b[jsp1 + js * b_dim1];
+ z__[25] = -b[jsp1 + jsp1 * b_dim1];
+ z__[26] = 0.f;
+ z__[27] = -e[jsp1 + jsp1 * e_dim1];
+
+/* Set up right hand side(s) */
+
+ rhs[0] = c__[is + js * c_dim1];
+ rhs[1] = c__[is + jsp1 * c_dim1];
+ rhs[2] = f[is + js * f_dim1];
+ rhs[3] = f[is + jsp1 * f_dim1];
+
+/* Solve Z * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+
+ if (*ijob == 0) {
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
+ c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L60: */
+ }
+ *scale *= scaloc;
+ }
+ } else {
+ slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
+ ipiv, jpiv);
+ }
+
+/* Unpack solution vector(s) */
+
+ c__[is + js * c_dim1] = rhs[0];
+ c__[is + jsp1 * c_dim1] = rhs[1];
+ f[is + js * f_dim1] = rhs[2];
+ f[is + jsp1 * f_dim1] = rhs[3];
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (i__ > 1) {
+ i__2 = is - 1;
+ sger_(&i__2, &nb, &c_b27, &a[is * a_dim1 + 1], &c__1,
+ rhs, &c__1, &c__[js * c_dim1 + 1], ldc);
+ i__2 = is - 1;
+ sger_(&i__2, &nb, &c_b27, &d__[is * d_dim1 + 1], &
+ c__1, rhs, &c__1, &f[js * f_dim1 + 1], ldf);
+ }
+ if (j < q) {
+ i__2 = *n - je;
+ saxpy_(&i__2, &rhs[2], &b[js + (je + 1) * b_dim1],
+ ldb, &c__[is + (je + 1) * c_dim1], ldc);
+ i__2 = *n - je;
+ saxpy_(&i__2, &rhs[2], &e[js + (je + 1) * e_dim1],
+ lde, &f[is + (je + 1) * f_dim1], ldf);
+ i__2 = *n - je;
+ saxpy_(&i__2, &rhs[3], &b[jsp1 + (je + 1) * b_dim1],
+ ldb, &c__[is + (je + 1) * c_dim1], ldc);
+ i__2 = *n - je;
+ saxpy_(&i__2, &rhs[3], &e[jsp1 + (je + 1) * e_dim1],
+ lde, &f[is + (je + 1) * f_dim1], ldf);
+ }
+
+ } else if (mb == 2 && nb == 1) {
+
+/* Build a 4-by-4 system Z * x = RHS */
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = a[isp1 + is * a_dim1];
+ z__[2] = d__[is + is * d_dim1];
+ z__[3] = 0.f;
+
+ z__[8] = a[is + isp1 * a_dim1];
+ z__[9] = a[isp1 + isp1 * a_dim1];
+ z__[10] = d__[is + isp1 * d_dim1];
+ z__[11] = d__[isp1 + isp1 * d_dim1];
+
+ z__[16] = -b[js + js * b_dim1];
+ z__[17] = 0.f;
+ z__[18] = -e[js + js * e_dim1];
+ z__[19] = 0.f;
+
+ z__[24] = 0.f;
+ z__[25] = -b[js + js * b_dim1];
+ z__[26] = 0.f;
+ z__[27] = -e[js + js * e_dim1];
+
+/* Set up right hand side(s) */
+
+ rhs[0] = c__[is + js * c_dim1];
+ rhs[1] = c__[isp1 + js * c_dim1];
+ rhs[2] = f[is + js * f_dim1];
+ rhs[3] = f[isp1 + js * f_dim1];
+
+/* Solve Z * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+ if (*ijob == 0) {
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
+ c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L70: */
+ }
+ *scale *= scaloc;
+ }
+ } else {
+ slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
+ ipiv, jpiv);
+ }
+
+/* Unpack solution vector(s) */
+
+ c__[is + js * c_dim1] = rhs[0];
+ c__[isp1 + js * c_dim1] = rhs[1];
+ f[is + js * f_dim1] = rhs[2];
+ f[isp1 + js * f_dim1] = rhs[3];
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (i__ > 1) {
+ i__2 = is - 1;
+ sgemv_("N", &i__2, &mb, &c_b27, &a[is * a_dim1 + 1],
+ lda, rhs, &c__1, &c_b42, &c__[js * c_dim1 + 1]
+, &c__1);
+ i__2 = is - 1;
+ sgemv_("N", &i__2, &mb, &c_b27, &d__[is * d_dim1 + 1],
+ ldd, rhs, &c__1, &c_b42, &f[js * f_dim1 + 1],
+ &c__1);
+ }
+ if (j < q) {
+ i__2 = *n - je;
+ sger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &b[js + (je
+ + 1) * b_dim1], ldb, &c__[is + (je + 1) *
+ c_dim1], ldc);
+ i__2 = *n - je;
+ sger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &e[js + (je
+ + 1) * e_dim1], lde, &f[is + (je + 1) *
+ f_dim1], ldf);
+ }
+
+ } else if (mb == 2 && nb == 2) {
+
+/* Build an 8-by-8 system Z * x = RHS */
+
+ slaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8);
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = a[isp1 + is * a_dim1];
+ z__[4] = d__[is + is * d_dim1];
+
+ z__[8] = a[is + isp1 * a_dim1];
+ z__[9] = a[isp1 + isp1 * a_dim1];
+ z__[12] = d__[is + isp1 * d_dim1];
+ z__[13] = d__[isp1 + isp1 * d_dim1];
+
+ z__[18] = a[is + is * a_dim1];
+ z__[19] = a[isp1 + is * a_dim1];
+ z__[22] = d__[is + is * d_dim1];
+
+ z__[26] = a[is + isp1 * a_dim1];
+ z__[27] = a[isp1 + isp1 * a_dim1];
+ z__[30] = d__[is + isp1 * d_dim1];
+ z__[31] = d__[isp1 + isp1 * d_dim1];
+
+ z__[32] = -b[js + js * b_dim1];
+ z__[34] = -b[js + jsp1 * b_dim1];
+ z__[36] = -e[js + js * e_dim1];
+ z__[38] = -e[js + jsp1 * e_dim1];
+
+ z__[41] = -b[js + js * b_dim1];
+ z__[43] = -b[js + jsp1 * b_dim1];
+ z__[45] = -e[js + js * e_dim1];
+ z__[47] = -e[js + jsp1 * e_dim1];
+
+ z__[48] = -b[jsp1 + js * b_dim1];
+ z__[50] = -b[jsp1 + jsp1 * b_dim1];
+ z__[54] = -e[jsp1 + jsp1 * e_dim1];
+
+ z__[57] = -b[jsp1 + js * b_dim1];
+ z__[59] = -b[jsp1 + jsp1 * b_dim1];
+ z__[63] = -e[jsp1 + jsp1 * e_dim1];
+
+/* Set up right hand side(s) */
+
+ k = 1;
+ ii = mb * nb + 1;
+ i__2 = nb - 1;
+ for (jj = 0; jj <= i__2; ++jj) {
+ scopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, &
+ rhs[k - 1], &c__1);
+ scopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[
+ ii - 1], &c__1);
+ k += mb;
+ ii += mb;
+/* L80: */
+ }
+
+/* Solve Z * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+ if (*ijob == 0) {
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
+ c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L90: */
+ }
+ *scale *= scaloc;
+ }
+ } else {
+ slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
+ ipiv, jpiv);
+ }
+
+/* Unpack solution vector(s) */
+
+ k = 1;
+ ii = mb * nb + 1;
+ i__2 = nb - 1;
+ for (jj = 0; jj <= i__2; ++jj) {
+ scopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) *
+ c_dim1], &c__1);
+ scopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) *
+ f_dim1], &c__1);
+ k += mb;
+ ii += mb;
+/* L100: */
+ }
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (i__ > 1) {
+ i__2 = is - 1;
+ sgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &a[is *
+ a_dim1 + 1], lda, rhs, &mb, &c_b42, &c__[js *
+ c_dim1 + 1], ldc);
+ i__2 = is - 1;
+ sgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &d__[is *
+ d_dim1 + 1], ldd, rhs, &mb, &c_b42, &f[js *
+ f_dim1 + 1], ldf);
+ }
+ if (j < q) {
+ k = mb * nb + 1;
+ i__2 = *n - je;
+ sgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1],
+ &mb, &b[js + (je + 1) * b_dim1], ldb, &c_b42,
+ &c__[is + (je + 1) * c_dim1], ldc);
+ i__2 = *n - je;
+ sgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1],
+ &mb, &e[js + (je + 1) * e_dim1], lde, &c_b42,
+ &f[is + (je + 1) * f_dim1], ldf);
+ }
+
+ }
+
+/* L110: */
+ }
+/* L120: */
+ }
+ } else {
+
+/* Solve (I, J) - subsystem */
+/* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) */
+/* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) */
+/* for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1 */
+
+ *scale = 1.f;
+ scaloc = 1.f;
+ i__1 = p;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+ is = iwork[i__];
+ isp1 = is + 1;
+ ie = iwork[i__ + 1] - 1;
+ mb = ie - is + 1;
+ i__2 = p + 2;
+ for (j = q; j >= i__2; --j) {
+
+ js = iwork[j];
+ jsp1 = js + 1;
+ je = iwork[j + 1] - 1;
+ nb = je - js + 1;
+ zdim = mb * nb << 1;
+ if (mb == 1 && nb == 1) {
+
+/* Build a 2-by-2 system Z' * x = RHS */
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = -b[js + js * b_dim1];
+ z__[8] = d__[is + is * d_dim1];
+ z__[9] = -e[js + js * e_dim1];
+
+/* Set up right hand side(s) */
+
+ rhs[0] = c__[is + js * c_dim1];
+ rhs[1] = f[is + js * f_dim1];
+
+/* Solve Z' * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__3 = *n;
+ for (k = 1; k <= i__3; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L130: */
+ }
+ *scale *= scaloc;
+ }
+
+/* Unpack solution vector(s) */
+
+ c__[is + js * c_dim1] = rhs[0];
+ f[is + js * f_dim1] = rhs[1];
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (j > p + 2) {
+ alpha = rhs[0];
+ i__3 = js - 1;
+ saxpy_(&i__3, &alpha, &b[js * b_dim1 + 1], &c__1, &f[
+ is + f_dim1], ldf);
+ alpha = rhs[1];
+ i__3 = js - 1;
+ saxpy_(&i__3, &alpha, &e[js * e_dim1 + 1], &c__1, &f[
+ is + f_dim1], ldf);
+ }
+ if (i__ < p) {
+ alpha = -rhs[0];
+ i__3 = *m - ie;
+ saxpy_(&i__3, &alpha, &a[is + (ie + 1) * a_dim1], lda,
+ &c__[ie + 1 + js * c_dim1], &c__1);
+ alpha = -rhs[1];
+ i__3 = *m - ie;
+ saxpy_(&i__3, &alpha, &d__[is + (ie + 1) * d_dim1],
+ ldd, &c__[ie + 1 + js * c_dim1], &c__1);
+ }
+
+ } else if (mb == 1 && nb == 2) {
+
+/* Build a 4-by-4 system Z' * x = RHS */
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = 0.f;
+ z__[2] = -b[js + js * b_dim1];
+ z__[3] = -b[jsp1 + js * b_dim1];
+
+ z__[8] = 0.f;
+ z__[9] = a[is + is * a_dim1];
+ z__[10] = -b[js + jsp1 * b_dim1];
+ z__[11] = -b[jsp1 + jsp1 * b_dim1];
+
+ z__[16] = d__[is + is * d_dim1];
+ z__[17] = 0.f;
+ z__[18] = -e[js + js * e_dim1];
+ z__[19] = 0.f;
+
+ z__[24] = 0.f;
+ z__[25] = d__[is + is * d_dim1];
+ z__[26] = -e[js + jsp1 * e_dim1];
+ z__[27] = -e[jsp1 + jsp1 * e_dim1];
+
+/* Set up right hand side(s) */
+
+ rhs[0] = c__[is + js * c_dim1];
+ rhs[1] = c__[is + jsp1 * c_dim1];
+ rhs[2] = f[is + js * f_dim1];
+ rhs[3] = f[is + jsp1 * f_dim1];
+
+/* Solve Z' * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__3 = *n;
+ for (k = 1; k <= i__3; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L140: */
+ }
+ *scale *= scaloc;
+ }
+
+/* Unpack solution vector(s) */
+
+ c__[is + js * c_dim1] = rhs[0];
+ c__[is + jsp1 * c_dim1] = rhs[1];
+ f[is + js * f_dim1] = rhs[2];
+ f[is + jsp1 * f_dim1] = rhs[3];
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (j > p + 2) {
+ i__3 = js - 1;
+ saxpy_(&i__3, rhs, &b[js * b_dim1 + 1], &c__1, &f[is
+ + f_dim1], ldf);
+ i__3 = js - 1;
+ saxpy_(&i__3, &rhs[1], &b[jsp1 * b_dim1 + 1], &c__1, &
+ f[is + f_dim1], ldf);
+ i__3 = js - 1;
+ saxpy_(&i__3, &rhs[2], &e[js * e_dim1 + 1], &c__1, &f[
+ is + f_dim1], ldf);
+ i__3 = js - 1;
+ saxpy_(&i__3, &rhs[3], &e[jsp1 * e_dim1 + 1], &c__1, &
+ f[is + f_dim1], ldf);
+ }
+ if (i__ < p) {
+ i__3 = *m - ie;
+ sger_(&i__3, &nb, &c_b27, &a[is + (ie + 1) * a_dim1],
+ lda, rhs, &c__1, &c__[ie + 1 + js * c_dim1],
+ ldc);
+ i__3 = *m - ie;
+ sger_(&i__3, &nb, &c_b27, &d__[is + (ie + 1) * d_dim1]
+, ldd, &rhs[2], &c__1, &c__[ie + 1 + js *
+ c_dim1], ldc);
+ }
+
+ } else if (mb == 2 && nb == 1) {
+
+/* Build a 4-by-4 system Z' * x = RHS */
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = a[is + isp1 * a_dim1];
+ z__[2] = -b[js + js * b_dim1];
+ z__[3] = 0.f;
+
+ z__[8] = a[isp1 + is * a_dim1];
+ z__[9] = a[isp1 + isp1 * a_dim1];
+ z__[10] = 0.f;
+ z__[11] = -b[js + js * b_dim1];
+
+ z__[16] = d__[is + is * d_dim1];
+ z__[17] = d__[is + isp1 * d_dim1];
+ z__[18] = -e[js + js * e_dim1];
+ z__[19] = 0.f;
+
+ z__[24] = 0.f;
+ z__[25] = d__[isp1 + isp1 * d_dim1];
+ z__[26] = 0.f;
+ z__[27] = -e[js + js * e_dim1];
+
+/* Set up right hand side(s) */
+
+ rhs[0] = c__[is + js * c_dim1];
+ rhs[1] = c__[isp1 + js * c_dim1];
+ rhs[2] = f[is + js * f_dim1];
+ rhs[3] = f[isp1 + js * f_dim1];
+
+/* Solve Z' * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__3 = *n;
+ for (k = 1; k <= i__3; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L150: */
+ }
+ *scale *= scaloc;
+ }
+
+/* Unpack solution vector(s) */
+
+ c__[is + js * c_dim1] = rhs[0];
+ c__[isp1 + js * c_dim1] = rhs[1];
+ f[is + js * f_dim1] = rhs[2];
+ f[isp1 + js * f_dim1] = rhs[3];
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (j > p + 2) {
+ i__3 = js - 1;
+ sger_(&mb, &i__3, &c_b42, rhs, &c__1, &b[js * b_dim1
+ + 1], &c__1, &f[is + f_dim1], ldf);
+ i__3 = js - 1;
+ sger_(&mb, &i__3, &c_b42, &rhs[2], &c__1, &e[js *
+ e_dim1 + 1], &c__1, &f[is + f_dim1], ldf);
+ }
+ if (i__ < p) {
+ i__3 = *m - ie;
+ sgemv_("T", &mb, &i__3, &c_b27, &a[is + (ie + 1) *
+ a_dim1], lda, rhs, &c__1, &c_b42, &c__[ie + 1
+ + js * c_dim1], &c__1);
+ i__3 = *m - ie;
+ sgemv_("T", &mb, &i__3, &c_b27, &d__[is + (ie + 1) *
+ d_dim1], ldd, &rhs[2], &c__1, &c_b42, &c__[ie
+ + 1 + js * c_dim1], &c__1);
+ }
+
+ } else if (mb == 2 && nb == 2) {
+
+/* Build an 8-by-8 system Z' * x = RHS */
+
+ slaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8);
+
+ z__[0] = a[is + is * a_dim1];
+ z__[1] = a[is + isp1 * a_dim1];
+ z__[4] = -b[js + js * b_dim1];
+ z__[6] = -b[jsp1 + js * b_dim1];
+
+ z__[8] = a[isp1 + is * a_dim1];
+ z__[9] = a[isp1 + isp1 * a_dim1];
+ z__[13] = -b[js + js * b_dim1];
+ z__[15] = -b[jsp1 + js * b_dim1];
+
+ z__[18] = a[is + is * a_dim1];
+ z__[19] = a[is + isp1 * a_dim1];
+ z__[20] = -b[js + jsp1 * b_dim1];
+ z__[22] = -b[jsp1 + jsp1 * b_dim1];
+
+ z__[26] = a[isp1 + is * a_dim1];
+ z__[27] = a[isp1 + isp1 * a_dim1];
+ z__[29] = -b[js + jsp1 * b_dim1];
+ z__[31] = -b[jsp1 + jsp1 * b_dim1];
+
+ z__[32] = d__[is + is * d_dim1];
+ z__[33] = d__[is + isp1 * d_dim1];
+ z__[36] = -e[js + js * e_dim1];
+
+ z__[41] = d__[isp1 + isp1 * d_dim1];
+ z__[45] = -e[js + js * e_dim1];
+
+ z__[50] = d__[is + is * d_dim1];
+ z__[51] = d__[is + isp1 * d_dim1];
+ z__[52] = -e[js + jsp1 * e_dim1];
+ z__[54] = -e[jsp1 + jsp1 * e_dim1];
+
+ z__[59] = d__[isp1 + isp1 * d_dim1];
+ z__[61] = -e[js + jsp1 * e_dim1];
+ z__[63] = -e[jsp1 + jsp1 * e_dim1];
+
+/* Set up right hand side(s) */
+
+ k = 1;
+ ii = mb * nb + 1;
+ i__3 = nb - 1;
+ for (jj = 0; jj <= i__3; ++jj) {
+ scopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, &
+ rhs[k - 1], &c__1);
+ scopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[
+ ii - 1], &c__1);
+ k += mb;
+ ii += mb;
+/* L160: */
+ }
+
+
+/* Solve Z' * x = RHS */
+
+ sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+
+ sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__3 = *n;
+ for (k = 1; k <= i__3; ++k) {
+ sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L170: */
+ }
+ *scale *= scaloc;
+ }
+
+/* Unpack solution vector(s) */
+
+ k = 1;
+ ii = mb * nb + 1;
+ i__3 = nb - 1;
+ for (jj = 0; jj <= i__3; ++jj) {
+ scopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) *
+ c_dim1], &c__1);
+ scopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) *
+ f_dim1], &c__1);
+ k += mb;
+ ii += mb;
+/* L180: */
+ }
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (j > p + 2) {
+ i__3 = js - 1;
+ sgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &c__[is +
+ js * c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &
+ c_b42, &f[is + f_dim1], ldf);
+ i__3 = js - 1;
+ sgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &f[is + js *
+ f_dim1], ldf, &e[js * e_dim1 + 1], lde, &
+ c_b42, &f[is + f_dim1], ldf);
+ }
+ if (i__ < p) {
+ i__3 = *m - ie;
+ sgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &a[is + (ie
+ + 1) * a_dim1], lda, &c__[is + js * c_dim1],
+ ldc, &c_b42, &c__[ie + 1 + js * c_dim1], ldc);
+ i__3 = *m - ie;
+ sgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &d__[is + (
+ ie + 1) * d_dim1], ldd, &f[is + js * f_dim1],
+ ldf, &c_b42, &c__[ie + 1 + js * c_dim1], ldc);
+ }
+
+ }
+
+/* L190: */
+ }
+/* L200: */
+ }
+
+ }
+ return 0;
+
+/* End of STGSY2 */
+
+} /* stgsy2_ */