diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stgsy2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stgsy2.c')
-rw-r--r-- | contrib/libs/clapack/stgsy2.c | 1106 |
1 files changed, 1106 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stgsy2.c b/contrib/libs/clapack/stgsy2.c new file mode 100644 index 0000000000..4c3cd044a5 --- /dev/null +++ b/contrib/libs/clapack/stgsy2.c @@ -0,0 +1,1106 @@ +/* stgsy2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__8 = 8; +static integer c__1 = 1; +static real c_b27 = -1.f; +static real c_b42 = 1.f; +static real c_b56 = 0.f; + +/* Subroutine */ int stgsy2_(char *trans, integer *ijob, integer *m, integer * + n, real *a, integer *lda, real *b, integer *ldb, real *c__, integer * + ldc, real *d__, integer *ldd, real *e, integer *lde, real *f, integer + *ldf, real *scale, real *rdsum, real *rdscal, integer *iwork, integer + *pq, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, + d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3; + + /* Local variables */ + integer i__, j, k, p, q; + real z__[64] /* was [8][8] */; + integer ie, je, mb, nb, ii, jj, is, js; + real rhs[8]; + integer isp1, jsp1; + extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, + integer *, real *, integer *, real *, integer *); + integer ierr, zdim, ipiv[8], jpiv[8]; + real alpha; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), + sgemm_(char *, char *, integer *, integer *, integer *, real *, + real *, integer *, real *, integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, + real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *), + saxpy_(integer *, real *, real *, integer *, real *, integer *), + sgesc2_(integer *, real *, integer *, real *, integer *, integer * +, real *), sgetc2_(integer *, real *, integer *, integer *, + integer *, integer *); + real scaloc; + extern /* Subroutine */ int slatdf_(integer *, integer *, real *, integer + *, real *, real *, real *, integer *, integer *), xerbla_(char *, + integer *), slaset_(char *, integer *, integer *, real *, + real *, real *, integer *); + logical notran; + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* January 2007 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* STGSY2 solves the generalized Sylvester equation: */ + +/* A * R - L * B = scale * C (1) */ +/* D * R - L * E = scale * F, */ + +/* using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices, */ +/* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */ +/* N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E) */ +/* must be in generalized Schur canonical form, i.e. A, B are upper */ +/* quasi triangular and D, E are upper triangular. The solution (R, L) */ +/* overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor */ +/* chosen to avoid overflow. */ + +/* In matrix notation solving equation (1) corresponds to solve */ +/* Z*x = scale*b, where Z is defined as */ + +/* Z = [ kron(In, A) -kron(B', Im) ] (2) */ +/* [ kron(In, D) -kron(E', Im) ], */ + +/* Ik is the identity matrix of size k and X' is the transpose of X. */ +/* kron(X, Y) is the Kronecker product between the matrices X and Y. */ +/* In the process of solving (1), we solve a number of such systems */ +/* where Dim(In), Dim(In) = 1 or 2. */ + +/* If TRANS = 'T', solve the transposed system Z'*y = scale*b for y, */ +/* which is equivalent to solve for R and L in */ + +/* A' * R + D' * L = scale * C (3) */ +/* R * B' + L * E' = scale * -F */ + +/* This case is used to compute an estimate of Dif[(A, D), (B, E)] = */ +/* sigma_min(Z) using reverse communicaton with SLACON. */ + +/* STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL */ +/* of an upper bound on the separation between to matrix pairs. Then */ +/* the input (A, D), (B, E) are sub-pencils of the matrix pair in */ +/* STGSYL. See STGSYL for details. */ + +/* Arguments */ +/* ========= */ + +/* TRANS (input) CHARACTER*1 */ +/* = 'N', solve the generalized Sylvester equation (1). */ +/* = 'T': solve the 'transposed' system (3). */ + +/* IJOB (input) INTEGER */ +/* Specifies what kind of functionality to be performed. */ +/* = 0: solve (1) only. */ +/* = 1: A contribution from this subsystem to a Frobenius */ +/* norm-based estimate of the separation between two matrix */ +/* pairs is computed. (look ahead strategy is used). */ +/* = 2: A contribution from this subsystem to a Frobenius */ +/* norm-based estimate of the separation between two matrix */ +/* pairs is computed. (SGECON on sub-systems is used.) */ +/* Not referenced if TRANS = 'T'. */ + +/* M (input) INTEGER */ +/* On entry, M specifies the order of A and D, and the row */ +/* dimension of C, F, R and L. */ + +/* N (input) INTEGER */ +/* On entry, N specifies the order of B and E, and the column */ +/* dimension of C, F, R and L. */ + +/* A (input) REAL array, dimension (LDA, M) */ +/* On entry, A contains an upper quasi triangular matrix. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the matrix A. LDA >= max(1, M). */ + +/* B (input) REAL array, dimension (LDB, N) */ +/* On entry, B contains an upper quasi triangular matrix. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the matrix B. LDB >= max(1, N). */ + +/* C (input/output) REAL array, dimension (LDC, N) */ +/* On entry, C contains the right-hand-side of the first matrix */ +/* equation in (1). */ +/* On exit, if IJOB = 0, C has been overwritten by the */ +/* solution R. */ + +/* LDC (input) INTEGER */ +/* The leading dimension of the matrix C. LDC >= max(1, M). */ + +/* D (input) REAL array, dimension (LDD, M) */ +/* On entry, D contains an upper triangular matrix. */ + +/* LDD (input) INTEGER */ +/* The leading dimension of the matrix D. LDD >= max(1, M). */ + +/* E (input) REAL array, dimension (LDE, N) */ +/* On entry, E contains an upper triangular matrix. */ + +/* LDE (input) INTEGER */ +/* The leading dimension of the matrix E. LDE >= max(1, N). */ + +/* F (input/output) REAL array, dimension (LDF, N) */ +/* On entry, F contains the right-hand-side of the second matrix */ +/* equation in (1). */ +/* On exit, if IJOB = 0, F has been overwritten by the */ +/* solution L. */ + +/* LDF (input) INTEGER */ +/* The leading dimension of the matrix F. LDF >= max(1, M). */ + +/* SCALE (output) REAL */ +/* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */ +/* R and L (C and F on entry) will hold the solutions to a */ +/* slightly perturbed system but the input matrices A, B, D and */ +/* E have not been changed. If SCALE = 0, R and L will hold the */ +/* solutions to the homogeneous system with C = F = 0. Normally, */ +/* SCALE = 1. */ + +/* RDSUM (input/output) REAL */ +/* On entry, the sum of squares of computed contributions to */ +/* the Dif-estimate under computation by STGSYL, where the */ +/* scaling factor RDSCAL (see below) has been factored out. */ +/* On exit, the corresponding sum of squares updated with the */ +/* contributions from the current sub-system. */ +/* If TRANS = 'T' RDSUM is not touched. */ +/* NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL. */ + +/* RDSCAL (input/output) REAL */ +/* On entry, scaling factor used to prevent overflow in RDSUM. */ +/* On exit, RDSCAL is updated w.r.t. the current contributions */ +/* in RDSUM. */ +/* If TRANS = 'T', RDSCAL is not touched. */ +/* NOTE: RDSCAL only makes sense when STGSY2 is called by */ +/* STGSYL. */ + +/* IWORK (workspace) INTEGER array, dimension (M+N+2) */ + +/* PQ (output) INTEGER */ +/* On exit, the number of subsystems (of size 2-by-2, 4-by-4 and */ +/* 8-by-8) solved by this routine. */ + +/* INFO (output) INTEGER */ +/* On exit, if INFO is set to */ +/* =0: Successful exit */ +/* <0: If INFO = -i, the i-th argument had an illegal value. */ +/* >0: The matrix pairs (A, D) and (B, E) have common or very */ +/* close eigenvalues. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* ===================================================================== */ +/* Replaced various illegal calls to SCOPY by calls to SLASET. */ +/* Sven Hammarling, 27/5/02. */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and test input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + d_dim1 = *ldd; + d_offset = 1 + d_dim1; + d__ -= d_offset; + e_dim1 = *lde; + e_offset = 1 + e_dim1; + e -= e_offset; + f_dim1 = *ldf; + f_offset = 1 + f_dim1; + f -= f_offset; + --iwork; + + /* Function Body */ + *info = 0; + ierr = 0; + notran = lsame_(trans, "N"); + if (! notran && ! lsame_(trans, "T")) { + *info = -1; + } else if (notran) { + if (*ijob < 0 || *ijob > 2) { + *info = -2; + } + } + if (*info == 0) { + if (*m <= 0) { + *info = -3; + } else if (*n <= 0) { + *info = -4; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*ldb < max(1,*n)) { + *info = -8; + } else if (*ldc < max(1,*m)) { + *info = -10; + } else if (*ldd < max(1,*m)) { + *info = -12; + } else if (*lde < max(1,*n)) { + *info = -14; + } else if (*ldf < max(1,*m)) { + *info = -16; + } + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("STGSY2", &i__1); + return 0; + } + +/* Determine block structure of A */ + + *pq = 0; + p = 0; + i__ = 1; +L10: + if (i__ > *m) { + goto L20; + } + ++p; + iwork[p] = i__; + if (i__ == *m) { + goto L20; + } + if (a[i__ + 1 + i__ * a_dim1] != 0.f) { + i__ += 2; + } else { + ++i__; + } + goto L10; +L20: + iwork[p + 1] = *m + 1; + +/* Determine block structure of B */ + + q = p + 1; + j = 1; +L30: + if (j > *n) { + goto L40; + } + ++q; + iwork[q] = j; + if (j == *n) { + goto L40; + } + if (b[j + 1 + j * b_dim1] != 0.f) { + j += 2; + } else { + ++j; + } + goto L30; +L40: + iwork[q + 1] = *n + 1; + *pq = p * (q - p - 1); + + if (notran) { + +/* Solve (I, J) - subsystem */ +/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */ +/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */ +/* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q */ + + *scale = 1.f; + scaloc = 1.f; + i__1 = q; + for (j = p + 2; j <= i__1; ++j) { + js = iwork[j]; + jsp1 = js + 1; + je = iwork[j + 1] - 1; + nb = je - js + 1; + for (i__ = p; i__ >= 1; --i__) { + + is = iwork[i__]; + isp1 = is + 1; + ie = iwork[i__ + 1] - 1; + mb = ie - is + 1; + zdim = mb * nb << 1; + + if (mb == 1 && nb == 1) { + +/* Build a 2-by-2 system Z * x = RHS */ + + z__[0] = a[is + is * a_dim1]; + z__[1] = d__[is + is * d_dim1]; + z__[8] = -b[js + js * b_dim1]; + z__[9] = -e[js + js * e_dim1]; + +/* Set up right hand side(s) */ + + rhs[0] = c__[is + js * c_dim1]; + rhs[1] = f[is + js * f_dim1]; + +/* Solve Z * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + + if (*ijob == 0) { + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], & + c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L50: */ + } + *scale *= scaloc; + } + } else { + slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, + ipiv, jpiv); + } + +/* Unpack solution vector(s) */ + + c__[is + js * c_dim1] = rhs[0]; + f[is + js * f_dim1] = rhs[1]; + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (i__ > 1) { + alpha = -rhs[0]; + i__2 = is - 1; + saxpy_(&i__2, &alpha, &a[is * a_dim1 + 1], &c__1, & + c__[js * c_dim1 + 1], &c__1); + i__2 = is - 1; + saxpy_(&i__2, &alpha, &d__[is * d_dim1 + 1], &c__1, & + f[js * f_dim1 + 1], &c__1); + } + if (j < q) { + i__2 = *n - je; + saxpy_(&i__2, &rhs[1], &b[js + (je + 1) * b_dim1], + ldb, &c__[is + (je + 1) * c_dim1], ldc); + i__2 = *n - je; + saxpy_(&i__2, &rhs[1], &e[js + (je + 1) * e_dim1], + lde, &f[is + (je + 1) * f_dim1], ldf); + } + + } else if (mb == 1 && nb == 2) { + +/* Build a 4-by-4 system Z * x = RHS */ + + z__[0] = a[is + is * a_dim1]; + z__[1] = 0.f; + z__[2] = d__[is + is * d_dim1]; + z__[3] = 0.f; + + z__[8] = 0.f; + z__[9] = a[is + is * a_dim1]; + z__[10] = 0.f; + z__[11] = d__[is + is * d_dim1]; + + z__[16] = -b[js + js * b_dim1]; + z__[17] = -b[js + jsp1 * b_dim1]; + z__[18] = -e[js + js * e_dim1]; + z__[19] = -e[js + jsp1 * e_dim1]; + + z__[24] = -b[jsp1 + js * b_dim1]; + z__[25] = -b[jsp1 + jsp1 * b_dim1]; + z__[26] = 0.f; + z__[27] = -e[jsp1 + jsp1 * e_dim1]; + +/* Set up right hand side(s) */ + + rhs[0] = c__[is + js * c_dim1]; + rhs[1] = c__[is + jsp1 * c_dim1]; + rhs[2] = f[is + js * f_dim1]; + rhs[3] = f[is + jsp1 * f_dim1]; + +/* Solve Z * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + + if (*ijob == 0) { + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], & + c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L60: */ + } + *scale *= scaloc; + } + } else { + slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, + ipiv, jpiv); + } + +/* Unpack solution vector(s) */ + + c__[is + js * c_dim1] = rhs[0]; + c__[is + jsp1 * c_dim1] = rhs[1]; + f[is + js * f_dim1] = rhs[2]; + f[is + jsp1 * f_dim1] = rhs[3]; + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (i__ > 1) { + i__2 = is - 1; + sger_(&i__2, &nb, &c_b27, &a[is * a_dim1 + 1], &c__1, + rhs, &c__1, &c__[js * c_dim1 + 1], ldc); + i__2 = is - 1; + sger_(&i__2, &nb, &c_b27, &d__[is * d_dim1 + 1], & + c__1, rhs, &c__1, &f[js * f_dim1 + 1], ldf); + } + if (j < q) { + i__2 = *n - je; + saxpy_(&i__2, &rhs[2], &b[js + (je + 1) * b_dim1], + ldb, &c__[is + (je + 1) * c_dim1], ldc); + i__2 = *n - je; + saxpy_(&i__2, &rhs[2], &e[js + (je + 1) * e_dim1], + lde, &f[is + (je + 1) * f_dim1], ldf); + i__2 = *n - je; + saxpy_(&i__2, &rhs[3], &b[jsp1 + (je + 1) * b_dim1], + ldb, &c__[is + (je + 1) * c_dim1], ldc); + i__2 = *n - je; + saxpy_(&i__2, &rhs[3], &e[jsp1 + (je + 1) * e_dim1], + lde, &f[is + (je + 1) * f_dim1], ldf); + } + + } else if (mb == 2 && nb == 1) { + +/* Build a 4-by-4 system Z * x = RHS */ + + z__[0] = a[is + is * a_dim1]; + z__[1] = a[isp1 + is * a_dim1]; + z__[2] = d__[is + is * d_dim1]; + z__[3] = 0.f; + + z__[8] = a[is + isp1 * a_dim1]; + z__[9] = a[isp1 + isp1 * a_dim1]; + z__[10] = d__[is + isp1 * d_dim1]; + z__[11] = d__[isp1 + isp1 * d_dim1]; + + z__[16] = -b[js + js * b_dim1]; + z__[17] = 0.f; + z__[18] = -e[js + js * e_dim1]; + z__[19] = 0.f; + + z__[24] = 0.f; + z__[25] = -b[js + js * b_dim1]; + z__[26] = 0.f; + z__[27] = -e[js + js * e_dim1]; + +/* Set up right hand side(s) */ + + rhs[0] = c__[is + js * c_dim1]; + rhs[1] = c__[isp1 + js * c_dim1]; + rhs[2] = f[is + js * f_dim1]; + rhs[3] = f[isp1 + js * f_dim1]; + +/* Solve Z * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + if (*ijob == 0) { + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], & + c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L70: */ + } + *scale *= scaloc; + } + } else { + slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, + ipiv, jpiv); + } + +/* Unpack solution vector(s) */ + + c__[is + js * c_dim1] = rhs[0]; + c__[isp1 + js * c_dim1] = rhs[1]; + f[is + js * f_dim1] = rhs[2]; + f[isp1 + js * f_dim1] = rhs[3]; + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (i__ > 1) { + i__2 = is - 1; + sgemv_("N", &i__2, &mb, &c_b27, &a[is * a_dim1 + 1], + lda, rhs, &c__1, &c_b42, &c__[js * c_dim1 + 1] +, &c__1); + i__2 = is - 1; + sgemv_("N", &i__2, &mb, &c_b27, &d__[is * d_dim1 + 1], + ldd, rhs, &c__1, &c_b42, &f[js * f_dim1 + 1], + &c__1); + } + if (j < q) { + i__2 = *n - je; + sger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &b[js + (je + + 1) * b_dim1], ldb, &c__[is + (je + 1) * + c_dim1], ldc); + i__2 = *n - je; + sger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &e[js + (je + + 1) * e_dim1], lde, &f[is + (je + 1) * + f_dim1], ldf); + } + + } else if (mb == 2 && nb == 2) { + +/* Build an 8-by-8 system Z * x = RHS */ + + slaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8); + + z__[0] = a[is + is * a_dim1]; + z__[1] = a[isp1 + is * a_dim1]; + z__[4] = d__[is + is * d_dim1]; + + z__[8] = a[is + isp1 * a_dim1]; + z__[9] = a[isp1 + isp1 * a_dim1]; + z__[12] = d__[is + isp1 * d_dim1]; + z__[13] = d__[isp1 + isp1 * d_dim1]; + + z__[18] = a[is + is * a_dim1]; + z__[19] = a[isp1 + is * a_dim1]; + z__[22] = d__[is + is * d_dim1]; + + z__[26] = a[is + isp1 * a_dim1]; + z__[27] = a[isp1 + isp1 * a_dim1]; + z__[30] = d__[is + isp1 * d_dim1]; + z__[31] = d__[isp1 + isp1 * d_dim1]; + + z__[32] = -b[js + js * b_dim1]; + z__[34] = -b[js + jsp1 * b_dim1]; + z__[36] = -e[js + js * e_dim1]; + z__[38] = -e[js + jsp1 * e_dim1]; + + z__[41] = -b[js + js * b_dim1]; + z__[43] = -b[js + jsp1 * b_dim1]; + z__[45] = -e[js + js * e_dim1]; + z__[47] = -e[js + jsp1 * e_dim1]; + + z__[48] = -b[jsp1 + js * b_dim1]; + z__[50] = -b[jsp1 + jsp1 * b_dim1]; + z__[54] = -e[jsp1 + jsp1 * e_dim1]; + + z__[57] = -b[jsp1 + js * b_dim1]; + z__[59] = -b[jsp1 + jsp1 * b_dim1]; + z__[63] = -e[jsp1 + jsp1 * e_dim1]; + +/* Set up right hand side(s) */ + + k = 1; + ii = mb * nb + 1; + i__2 = nb - 1; + for (jj = 0; jj <= i__2; ++jj) { + scopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, & + rhs[k - 1], &c__1); + scopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[ + ii - 1], &c__1); + k += mb; + ii += mb; +/* L80: */ + } + +/* Solve Z * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + if (*ijob == 0) { + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], & + c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L90: */ + } + *scale *= scaloc; + } + } else { + slatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, + ipiv, jpiv); + } + +/* Unpack solution vector(s) */ + + k = 1; + ii = mb * nb + 1; + i__2 = nb - 1; + for (jj = 0; jj <= i__2; ++jj) { + scopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) * + c_dim1], &c__1); + scopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) * + f_dim1], &c__1); + k += mb; + ii += mb; +/* L100: */ + } + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (i__ > 1) { + i__2 = is - 1; + sgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &a[is * + a_dim1 + 1], lda, rhs, &mb, &c_b42, &c__[js * + c_dim1 + 1], ldc); + i__2 = is - 1; + sgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &d__[is * + d_dim1 + 1], ldd, rhs, &mb, &c_b42, &f[js * + f_dim1 + 1], ldf); + } + if (j < q) { + k = mb * nb + 1; + i__2 = *n - je; + sgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1], + &mb, &b[js + (je + 1) * b_dim1], ldb, &c_b42, + &c__[is + (je + 1) * c_dim1], ldc); + i__2 = *n - je; + sgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1], + &mb, &e[js + (je + 1) * e_dim1], lde, &c_b42, + &f[is + (je + 1) * f_dim1], ldf); + } + + } + +/* L110: */ + } +/* L120: */ + } + } else { + +/* Solve (I, J) - subsystem */ +/* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) */ +/* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) */ +/* for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1 */ + + *scale = 1.f; + scaloc = 1.f; + i__1 = p; + for (i__ = 1; i__ <= i__1; ++i__) { + + is = iwork[i__]; + isp1 = is + 1; + ie = iwork[i__ + 1] - 1; + mb = ie - is + 1; + i__2 = p + 2; + for (j = q; j >= i__2; --j) { + + js = iwork[j]; + jsp1 = js + 1; + je = iwork[j + 1] - 1; + nb = je - js + 1; + zdim = mb * nb << 1; + if (mb == 1 && nb == 1) { + +/* Build a 2-by-2 system Z' * x = RHS */ + + z__[0] = a[is + is * a_dim1]; + z__[1] = -b[js + js * b_dim1]; + z__[8] = d__[is + is * d_dim1]; + z__[9] = -e[js + js * e_dim1]; + +/* Set up right hand side(s) */ + + rhs[0] = c__[is + js * c_dim1]; + rhs[1] = f[is + js * f_dim1]; + +/* Solve Z' * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__3 = *n; + for (k = 1; k <= i__3; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L130: */ + } + *scale *= scaloc; + } + +/* Unpack solution vector(s) */ + + c__[is + js * c_dim1] = rhs[0]; + f[is + js * f_dim1] = rhs[1]; + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (j > p + 2) { + alpha = rhs[0]; + i__3 = js - 1; + saxpy_(&i__3, &alpha, &b[js * b_dim1 + 1], &c__1, &f[ + is + f_dim1], ldf); + alpha = rhs[1]; + i__3 = js - 1; + saxpy_(&i__3, &alpha, &e[js * e_dim1 + 1], &c__1, &f[ + is + f_dim1], ldf); + } + if (i__ < p) { + alpha = -rhs[0]; + i__3 = *m - ie; + saxpy_(&i__3, &alpha, &a[is + (ie + 1) * a_dim1], lda, + &c__[ie + 1 + js * c_dim1], &c__1); + alpha = -rhs[1]; + i__3 = *m - ie; + saxpy_(&i__3, &alpha, &d__[is + (ie + 1) * d_dim1], + ldd, &c__[ie + 1 + js * c_dim1], &c__1); + } + + } else if (mb == 1 && nb == 2) { + +/* Build a 4-by-4 system Z' * x = RHS */ + + z__[0] = a[is + is * a_dim1]; + z__[1] = 0.f; + z__[2] = -b[js + js * b_dim1]; + z__[3] = -b[jsp1 + js * b_dim1]; + + z__[8] = 0.f; + z__[9] = a[is + is * a_dim1]; + z__[10] = -b[js + jsp1 * b_dim1]; + z__[11] = -b[jsp1 + jsp1 * b_dim1]; + + z__[16] = d__[is + is * d_dim1]; + z__[17] = 0.f; + z__[18] = -e[js + js * e_dim1]; + z__[19] = 0.f; + + z__[24] = 0.f; + z__[25] = d__[is + is * d_dim1]; + z__[26] = -e[js + jsp1 * e_dim1]; + z__[27] = -e[jsp1 + jsp1 * e_dim1]; + +/* Set up right hand side(s) */ + + rhs[0] = c__[is + js * c_dim1]; + rhs[1] = c__[is + jsp1 * c_dim1]; + rhs[2] = f[is + js * f_dim1]; + rhs[3] = f[is + jsp1 * f_dim1]; + +/* Solve Z' * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__3 = *n; + for (k = 1; k <= i__3; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L140: */ + } + *scale *= scaloc; + } + +/* Unpack solution vector(s) */ + + c__[is + js * c_dim1] = rhs[0]; + c__[is + jsp1 * c_dim1] = rhs[1]; + f[is + js * f_dim1] = rhs[2]; + f[is + jsp1 * f_dim1] = rhs[3]; + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (j > p + 2) { + i__3 = js - 1; + saxpy_(&i__3, rhs, &b[js * b_dim1 + 1], &c__1, &f[is + + f_dim1], ldf); + i__3 = js - 1; + saxpy_(&i__3, &rhs[1], &b[jsp1 * b_dim1 + 1], &c__1, & + f[is + f_dim1], ldf); + i__3 = js - 1; + saxpy_(&i__3, &rhs[2], &e[js * e_dim1 + 1], &c__1, &f[ + is + f_dim1], ldf); + i__3 = js - 1; + saxpy_(&i__3, &rhs[3], &e[jsp1 * e_dim1 + 1], &c__1, & + f[is + f_dim1], ldf); + } + if (i__ < p) { + i__3 = *m - ie; + sger_(&i__3, &nb, &c_b27, &a[is + (ie + 1) * a_dim1], + lda, rhs, &c__1, &c__[ie + 1 + js * c_dim1], + ldc); + i__3 = *m - ie; + sger_(&i__3, &nb, &c_b27, &d__[is + (ie + 1) * d_dim1] +, ldd, &rhs[2], &c__1, &c__[ie + 1 + js * + c_dim1], ldc); + } + + } else if (mb == 2 && nb == 1) { + +/* Build a 4-by-4 system Z' * x = RHS */ + + z__[0] = a[is + is * a_dim1]; + z__[1] = a[is + isp1 * a_dim1]; + z__[2] = -b[js + js * b_dim1]; + z__[3] = 0.f; + + z__[8] = a[isp1 + is * a_dim1]; + z__[9] = a[isp1 + isp1 * a_dim1]; + z__[10] = 0.f; + z__[11] = -b[js + js * b_dim1]; + + z__[16] = d__[is + is * d_dim1]; + z__[17] = d__[is + isp1 * d_dim1]; + z__[18] = -e[js + js * e_dim1]; + z__[19] = 0.f; + + z__[24] = 0.f; + z__[25] = d__[isp1 + isp1 * d_dim1]; + z__[26] = 0.f; + z__[27] = -e[js + js * e_dim1]; + +/* Set up right hand side(s) */ + + rhs[0] = c__[is + js * c_dim1]; + rhs[1] = c__[isp1 + js * c_dim1]; + rhs[2] = f[is + js * f_dim1]; + rhs[3] = f[isp1 + js * f_dim1]; + +/* Solve Z' * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__3 = *n; + for (k = 1; k <= i__3; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L150: */ + } + *scale *= scaloc; + } + +/* Unpack solution vector(s) */ + + c__[is + js * c_dim1] = rhs[0]; + c__[isp1 + js * c_dim1] = rhs[1]; + f[is + js * f_dim1] = rhs[2]; + f[isp1 + js * f_dim1] = rhs[3]; + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (j > p + 2) { + i__3 = js - 1; + sger_(&mb, &i__3, &c_b42, rhs, &c__1, &b[js * b_dim1 + + 1], &c__1, &f[is + f_dim1], ldf); + i__3 = js - 1; + sger_(&mb, &i__3, &c_b42, &rhs[2], &c__1, &e[js * + e_dim1 + 1], &c__1, &f[is + f_dim1], ldf); + } + if (i__ < p) { + i__3 = *m - ie; + sgemv_("T", &mb, &i__3, &c_b27, &a[is + (ie + 1) * + a_dim1], lda, rhs, &c__1, &c_b42, &c__[ie + 1 + + js * c_dim1], &c__1); + i__3 = *m - ie; + sgemv_("T", &mb, &i__3, &c_b27, &d__[is + (ie + 1) * + d_dim1], ldd, &rhs[2], &c__1, &c_b42, &c__[ie + + 1 + js * c_dim1], &c__1); + } + + } else if (mb == 2 && nb == 2) { + +/* Build an 8-by-8 system Z' * x = RHS */ + + slaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8); + + z__[0] = a[is + is * a_dim1]; + z__[1] = a[is + isp1 * a_dim1]; + z__[4] = -b[js + js * b_dim1]; + z__[6] = -b[jsp1 + js * b_dim1]; + + z__[8] = a[isp1 + is * a_dim1]; + z__[9] = a[isp1 + isp1 * a_dim1]; + z__[13] = -b[js + js * b_dim1]; + z__[15] = -b[jsp1 + js * b_dim1]; + + z__[18] = a[is + is * a_dim1]; + z__[19] = a[is + isp1 * a_dim1]; + z__[20] = -b[js + jsp1 * b_dim1]; + z__[22] = -b[jsp1 + jsp1 * b_dim1]; + + z__[26] = a[isp1 + is * a_dim1]; + z__[27] = a[isp1 + isp1 * a_dim1]; + z__[29] = -b[js + jsp1 * b_dim1]; + z__[31] = -b[jsp1 + jsp1 * b_dim1]; + + z__[32] = d__[is + is * d_dim1]; + z__[33] = d__[is + isp1 * d_dim1]; + z__[36] = -e[js + js * e_dim1]; + + z__[41] = d__[isp1 + isp1 * d_dim1]; + z__[45] = -e[js + js * e_dim1]; + + z__[50] = d__[is + is * d_dim1]; + z__[51] = d__[is + isp1 * d_dim1]; + z__[52] = -e[js + jsp1 * e_dim1]; + z__[54] = -e[jsp1 + jsp1 * e_dim1]; + + z__[59] = d__[isp1 + isp1 * d_dim1]; + z__[61] = -e[js + jsp1 * e_dim1]; + z__[63] = -e[jsp1 + jsp1 * e_dim1]; + +/* Set up right hand side(s) */ + + k = 1; + ii = mb * nb + 1; + i__3 = nb - 1; + for (jj = 0; jj <= i__3; ++jj) { + scopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, & + rhs[k - 1], &c__1); + scopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[ + ii - 1], &c__1); + k += mb; + ii += mb; +/* L160: */ + } + + +/* Solve Z' * x = RHS */ + + sgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + + sgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__3 = *n; + for (k = 1; k <= i__3; ++k) { + sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L170: */ + } + *scale *= scaloc; + } + +/* Unpack solution vector(s) */ + + k = 1; + ii = mb * nb + 1; + i__3 = nb - 1; + for (jj = 0; jj <= i__3; ++jj) { + scopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) * + c_dim1], &c__1); + scopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) * + f_dim1], &c__1); + k += mb; + ii += mb; +/* L180: */ + } + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (j > p + 2) { + i__3 = js - 1; + sgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &c__[is + + js * c_dim1], ldc, &b[js * b_dim1 + 1], ldb, & + c_b42, &f[is + f_dim1], ldf); + i__3 = js - 1; + sgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &f[is + js * + f_dim1], ldf, &e[js * e_dim1 + 1], lde, & + c_b42, &f[is + f_dim1], ldf); + } + if (i__ < p) { + i__3 = *m - ie; + sgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &a[is + (ie + + 1) * a_dim1], lda, &c__[is + js * c_dim1], + ldc, &c_b42, &c__[ie + 1 + js * c_dim1], ldc); + i__3 = *m - ie; + sgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &d__[is + ( + ie + 1) * d_dim1], ldd, &f[is + js * f_dim1], + ldf, &c_b42, &c__[ie + 1 + js * c_dim1], ldc); + } + + } + +/* L190: */ + } +/* L200: */ + } + + } + return 0; + +/* End of STGSY2 */ + +} /* stgsy2_ */ |