aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/stgsna.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stgsna.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stgsna.c')
-rw-r--r--contrib/libs/clapack/stgsna.c691
1 files changed, 691 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stgsna.c b/contrib/libs/clapack/stgsna.c
new file mode 100644
index 0000000000..d469299e31
--- /dev/null
+++ b/contrib/libs/clapack/stgsna.c
@@ -0,0 +1,691 @@
+/* stgsna.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static real c_b19 = 1.f;
+static real c_b21 = 0.f;
+static integer c__2 = 2;
+static logical c_false = FALSE_;
+static integer c__3 = 3;
+
+/* Subroutine */ int stgsna_(char *job, char *howmny, logical *select,
+ integer *n, real *a, integer *lda, real *b, integer *ldb, real *vl,
+ integer *ldvl, real *vr, integer *ldvr, real *s, real *dif, integer *
+ mm, integer *m, real *work, integer *lwork, integer *iwork, integer *
+ info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
+ vr_offset, i__1, i__2;
+ real r__1, r__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, k;
+ real c1, c2;
+ integer n1, n2, ks, iz;
+ real eps, beta, cond;
+ logical pair;
+ integer ierr;
+ real uhav, uhbv;
+ integer ifst;
+ real lnrm;
+ extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
+ integer ilst;
+ real rnrm;
+ extern /* Subroutine */ int slag2_(real *, integer *, real *, integer *,
+ real *, real *, real *, real *, real *, real *);
+ extern doublereal snrm2_(integer *, real *, integer *);
+ real root1, root2, scale;
+ extern logical lsame_(char *, char *);
+ real uhavi, uhbvi;
+ extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
+ real *, integer *, real *, integer *, real *, real *, integer *);
+ real tmpii;
+ integer lwmin;
+ logical wants;
+ real tmpir, tmpri, dummy[1], tmprr;
+ extern doublereal slapy2_(real *, real *);
+ real dummy1[1], alphai, alphar;
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ logical wantbh, wantdf;
+ extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
+ integer *, real *, integer *), stgexc_(logical *, logical
+ *, integer *, real *, integer *, real *, integer *, real *,
+ integer *, real *, integer *, integer *, integer *, real *,
+ integer *, integer *);
+ logical somcon;
+ real alprqt, smlnum;
+ logical lquery;
+ extern /* Subroutine */ int stgsyl_(char *, integer *, integer *, integer
+ *, real *, integer *, real *, integer *, real *, integer *, real *
+, integer *, real *, integer *, real *, integer *, real *, real *,
+ real *, integer *, integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* STGSNA estimates reciprocal condition numbers for specified */
+/* eigenvalues and/or eigenvectors of a matrix pair (A, B) in */
+/* generalized real Schur canonical form (or of any matrix pair */
+/* (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where */
+/* Z' denotes the transpose of Z. */
+
+/* (A, B) must be in generalized real Schur form (as returned by SGGES), */
+/* i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */
+/* blocks. B is upper triangular. */
+
+
+/* Arguments */
+/* ========= */
+
+/* JOB (input) CHARACTER*1 */
+/* Specifies whether condition numbers are required for */
+/* eigenvalues (S) or eigenvectors (DIF): */
+/* = 'E': for eigenvalues only (S); */
+/* = 'V': for eigenvectors only (DIF); */
+/* = 'B': for both eigenvalues and eigenvectors (S and DIF). */
+
+/* HOWMNY (input) CHARACTER*1 */
+/* = 'A': compute condition numbers for all eigenpairs; */
+/* = 'S': compute condition numbers for selected eigenpairs */
+/* specified by the array SELECT. */
+
+/* SELECT (input) LOGICAL array, dimension (N) */
+/* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
+/* condition numbers are required. To select condition numbers */
+/* for the eigenpair corresponding to a real eigenvalue w(j), */
+/* SELECT(j) must be set to .TRUE.. To select condition numbers */
+/* corresponding to a complex conjugate pair of eigenvalues w(j) */
+/* and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
+/* set to .TRUE.. */
+/* If HOWMNY = 'A', SELECT is not referenced. */
+
+/* N (input) INTEGER */
+/* The order of the square matrix pair (A, B). N >= 0. */
+
+/* A (input) REAL array, dimension (LDA,N) */
+/* The upper quasi-triangular matrix A in the pair (A,B). */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input) REAL array, dimension (LDB,N) */
+/* The upper triangular matrix B in the pair (A,B). */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* VL (input) REAL array, dimension (LDVL,M) */
+/* If JOB = 'E' or 'B', VL must contain left eigenvectors of */
+/* (A, B), corresponding to the eigenpairs specified by HOWMNY */
+/* and SELECT. The eigenvectors must be stored in consecutive */
+/* columns of VL, as returned by STGEVC. */
+/* If JOB = 'V', VL is not referenced. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the array VL. LDVL >= 1. */
+/* If JOB = 'E' or 'B', LDVL >= N. */
+
+/* VR (input) REAL array, dimension (LDVR,M) */
+/* If JOB = 'E' or 'B', VR must contain right eigenvectors of */
+/* (A, B), corresponding to the eigenpairs specified by HOWMNY */
+/* and SELECT. The eigenvectors must be stored in consecutive */
+/* columns ov VR, as returned by STGEVC. */
+/* If JOB = 'V', VR is not referenced. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. LDVR >= 1. */
+/* If JOB = 'E' or 'B', LDVR >= N. */
+
+/* S (output) REAL array, dimension (MM) */
+/* If JOB = 'E' or 'B', the reciprocal condition numbers of the */
+/* selected eigenvalues, stored in consecutive elements of the */
+/* array. For a complex conjugate pair of eigenvalues two */
+/* consecutive elements of S are set to the same value. Thus */
+/* S(j), DIF(j), and the j-th columns of VL and VR all */
+/* correspond to the same eigenpair (but not in general the */
+/* j-th eigenpair, unless all eigenpairs are selected). */
+/* If JOB = 'V', S is not referenced. */
+
+/* DIF (output) REAL array, dimension (MM) */
+/* If JOB = 'V' or 'B', the estimated reciprocal condition */
+/* numbers of the selected eigenvectors, stored in consecutive */
+/* elements of the array. For a complex eigenvector two */
+/* consecutive elements of DIF are set to the same value. If */
+/* the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */
+/* is set to 0; this can only occur when the true value would be */
+/* very small anyway. */
+/* If JOB = 'E', DIF is not referenced. */
+
+/* MM (input) INTEGER */
+/* The number of elements in the arrays S and DIF. MM >= M. */
+
+/* M (output) INTEGER */
+/* The number of elements of the arrays S and DIF used to store */
+/* the specified condition numbers; for each selected real */
+/* eigenvalue one element is used, and for each selected complex */
+/* conjugate pair of eigenvalues, two elements are used. */
+/* If HOWMNY = 'A', M is set to N. */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,N). */
+/* If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* IWORK (workspace) INTEGER array, dimension (N + 6) */
+/* If JOB = 'E', IWORK is not referenced. */
+
+/* INFO (output) INTEGER */
+/* =0: Successful exit */
+/* <0: If INFO = -i, the i-th argument had an illegal value */
+
+
+/* Further Details */
+/* =============== */
+
+/* The reciprocal of the condition number of a generalized eigenvalue */
+/* w = (a, b) is defined as */
+
+/* S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v)) */
+
+/* where u and v are the left and right eigenvectors of (A, B) */
+/* corresponding to w; |z| denotes the absolute value of the complex */
+/* number, and norm(u) denotes the 2-norm of the vector u. */
+/* The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv) */
+/* of the matrix pair (A, B). If both a and b equal zero, then (A B) is */
+/* singular and S(I) = -1 is returned. */
+
+/* An approximate error bound on the chordal distance between the i-th */
+/* computed generalized eigenvalue w and the corresponding exact */
+/* eigenvalue lambda is */
+
+/* chord(w, lambda) <= EPS * norm(A, B) / S(I) */
+
+/* where EPS is the machine precision. */
+
+/* The reciprocal of the condition number DIF(i) of right eigenvector u */
+/* and left eigenvector v corresponding to the generalized eigenvalue w */
+/* is defined as follows: */
+
+/* a) If the i-th eigenvalue w = (a,b) is real */
+
+/* Suppose U and V are orthogonal transformations such that */
+
+/* U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 */
+/* ( 0 S22 ),( 0 T22 ) n-1 */
+/* 1 n-1 1 n-1 */
+
+/* Then the reciprocal condition number DIF(i) is */
+
+/* Difl((a, b), (S22, T22)) = sigma-min( Zl ), */
+
+/* where sigma-min(Zl) denotes the smallest singular value of the */
+/* 2(n-1)-by-2(n-1) matrix */
+
+/* Zl = [ kron(a, In-1) -kron(1, S22) ] */
+/* [ kron(b, In-1) -kron(1, T22) ] . */
+
+/* Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */
+/* Kronecker product between the matrices X and Y. */
+
+/* Note that if the default method for computing DIF(i) is wanted */
+/* (see SLATDF), then the parameter DIFDRI (see below) should be */
+/* changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). */
+/* See STGSYL for more details. */
+
+/* b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */
+
+/* Suppose U and V are orthogonal transformations such that */
+
+/* U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 */
+/* ( 0 S22 ),( 0 T22) n-2 */
+/* 2 n-2 2 n-2 */
+
+/* and (S11, T11) corresponds to the complex conjugate eigenvalue */
+/* pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */
+/* that */
+
+/* U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 ) */
+/* ( 0 s22 ) ( 0 t22 ) */
+
+/* where the generalized eigenvalues w = s11/t11 and */
+/* conjg(w) = s22/t22. */
+
+/* Then the reciprocal condition number DIF(i) is bounded by */
+
+/* min( d1, max( 1, |real(s11)/real(s22)| )*d2 ) */
+
+/* where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where */
+/* Z1 is the complex 2-by-2 matrix */
+
+/* Z1 = [ s11 -s22 ] */
+/* [ t11 -t22 ], */
+
+/* This is done by computing (using real arithmetic) the */
+/* roots of the characteristical polynomial det(Z1' * Z1 - lambda I), */
+/* where Z1' denotes the conjugate transpose of Z1 and det(X) denotes */
+/* the determinant of X. */
+
+/* and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */
+/* upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2) */
+
+/* Z2 = [ kron(S11', In-2) -kron(I2, S22) ] */
+/* [ kron(T11', In-2) -kron(I2, T22) ] */
+
+/* Note that if the default method for computing DIF is wanted (see */
+/* SLATDF), then the parameter DIFDRI (see below) should be changed */
+/* from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL */
+/* for more details. */
+
+/* For each eigenvalue/vector specified by SELECT, DIF stores a */
+/* Frobenius norm-based estimate of Difl. */
+
+/* An approximate error bound for the i-th computed eigenvector VL(i) or */
+/* VR(i) is given by */
+
+/* EPS * norm(A, B) / DIF(i). */
+
+/* See ref. [2-3] for more details and further references. */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* References */
+/* ========== */
+
+/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
+/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
+/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
+/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
+
+/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
+/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
+/* Estimation: Theory, Algorithms and Software, */
+/* Report UMINF - 94.04, Department of Computing Science, Umea */
+/* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
+/* Note 87. To appear in Numerical Algorithms, 1996. */
+
+/* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
+/* for Solving the Generalized Sylvester Equation and Estimating the */
+/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
+/* Department of Computing Science, Umea University, S-901 87 Umea, */
+/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
+/* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
+/* No 1, 1996. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test the input parameters */
+
+ /* Parameter adjustments */
+ --select;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --s;
+ --dif;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ wantbh = lsame_(job, "B");
+ wants = lsame_(job, "E") || wantbh;
+ wantdf = lsame_(job, "V") || wantbh;
+
+ somcon = lsame_(howmny, "S");
+
+ *info = 0;
+ lquery = *lwork == -1;
+
+ if (! wants && ! wantdf) {
+ *info = -1;
+ } else if (! lsame_(howmny, "A") && ! somcon) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ } else if (wants && *ldvl < *n) {
+ *info = -10;
+ } else if (wants && *ldvr < *n) {
+ *info = -12;
+ } else {
+
+/* Set M to the number of eigenpairs for which condition numbers */
+/* are required, and test MM. */
+
+ if (somcon) {
+ *m = 0;
+ pair = FALSE_;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (pair) {
+ pair = FALSE_;
+ } else {
+ if (k < *n) {
+ if (a[k + 1 + k * a_dim1] == 0.f) {
+ if (select[k]) {
+ ++(*m);
+ }
+ } else {
+ pair = TRUE_;
+ if (select[k] || select[k + 1]) {
+ *m += 2;
+ }
+ }
+ } else {
+ if (select[*n]) {
+ ++(*m);
+ }
+ }
+ }
+/* L10: */
+ }
+ } else {
+ *m = *n;
+ }
+
+ if (*n == 0) {
+ lwmin = 1;
+ } else if (lsame_(job, "V") || lsame_(job,
+ "B")) {
+ lwmin = (*n << 1) * (*n + 2) + 16;
+ } else {
+ lwmin = *n;
+ }
+ work[1] = (real) lwmin;
+
+ if (*mm < *m) {
+ *info = -15;
+ } else if (*lwork < lwmin && ! lquery) {
+ *info = -18;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("STGSNA", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = slamch_("P");
+ smlnum = slamch_("S") / eps;
+ ks = 0;
+ pair = FALSE_;
+
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+
+/* Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */
+
+ if (pair) {
+ pair = FALSE_;
+ goto L20;
+ } else {
+ if (k < *n) {
+ pair = a[k + 1 + k * a_dim1] != 0.f;
+ }
+ }
+
+/* Determine whether condition numbers are required for the k-th */
+/* eigenpair. */
+
+ if (somcon) {
+ if (pair) {
+ if (! select[k] && ! select[k + 1]) {
+ goto L20;
+ }
+ } else {
+ if (! select[k]) {
+ goto L20;
+ }
+ }
+ }
+
+ ++ks;
+
+ if (wants) {
+
+/* Compute the reciprocal condition number of the k-th */
+/* eigenvalue. */
+
+ if (pair) {
+
+/* Complex eigenvalue pair. */
+
+ r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
+ r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
+ rnrm = slapy2_(&r__1, &r__2);
+ r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
+ r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
+ lnrm = slapy2_(&r__1, &r__2);
+ sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
+ + 1], &c__1, &c_b21, &work[1], &c__1);
+ tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
+ c__1);
+ tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
+ &c__1);
+ sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) *
+ vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
+ tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
+ &c__1);
+ tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
+ c__1);
+ uhav = tmprr + tmpii;
+ uhavi = tmpir - tmpri;
+ sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
+ + 1], &c__1, &c_b21, &work[1], &c__1);
+ tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
+ c__1);
+ tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
+ &c__1);
+ sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) *
+ vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
+ tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
+ &c__1);
+ tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
+ c__1);
+ uhbv = tmprr + tmpii;
+ uhbvi = tmpir - tmpri;
+ uhav = slapy2_(&uhav, &uhavi);
+ uhbv = slapy2_(&uhbv, &uhbvi);
+ cond = slapy2_(&uhav, &uhbv);
+ s[ks] = cond / (rnrm * lnrm);
+ s[ks + 1] = s[ks];
+
+ } else {
+
+/* Real eigenvalue. */
+
+ rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
+ lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
+ sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
+ + 1], &c__1, &c_b21, &work[1], &c__1);
+ uhav = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
+ ;
+ sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
+ + 1], &c__1, &c_b21, &work[1], &c__1);
+ uhbv = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
+ ;
+ cond = slapy2_(&uhav, &uhbv);
+ if (cond == 0.f) {
+ s[ks] = -1.f;
+ } else {
+ s[ks] = cond / (rnrm * lnrm);
+ }
+ }
+ }
+
+ if (wantdf) {
+ if (*n == 1) {
+ dif[ks] = slapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);
+ goto L20;
+ }
+
+/* Estimate the reciprocal condition number of the k-th */
+/* eigenvectors. */
+ if (pair) {
+
+/* Copy the 2-by 2 pencil beginning at (A(k,k), B(k, k)). */
+/* Compute the eigenvalue(s) at position K. */
+
+ work[1] = a[k + k * a_dim1];
+ work[2] = a[k + 1 + k * a_dim1];
+ work[3] = a[k + (k + 1) * a_dim1];
+ work[4] = a[k + 1 + (k + 1) * a_dim1];
+ work[5] = b[k + k * b_dim1];
+ work[6] = b[k + 1 + k * b_dim1];
+ work[7] = b[k + (k + 1) * b_dim1];
+ work[8] = b[k + 1 + (k + 1) * b_dim1];
+ r__1 = smlnum * eps;
+ slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta, dummy1,
+ &alphar, dummy, &alphai);
+ alprqt = 1.f;
+ c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.f;
+ c2 = beta * 4.f * beta * alphai * alphai;
+ root1 = c1 + sqrt(c1 * c1 - c2 * 4.f);
+ root2 = c2 / root1;
+ root1 /= 2.f;
+/* Computing MIN */
+ r__1 = sqrt(root1), r__2 = sqrt(root2);
+ cond = dmin(r__1,r__2);
+ }
+
+/* Copy the matrix (A, B) to the array WORK and swap the */
+/* diagonal block beginning at A(k,k) to the (1,1) position. */
+
+ slacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
+ slacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
+ ifst = k;
+ ilst = 1;
+
+ i__2 = *lwork - (*n << 1) * *n;
+ stgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n,
+ dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *
+ n << 1) + 1], &i__2, &ierr);
+
+ if (ierr > 0) {
+
+/* Ill-conditioned problem - swap rejected. */
+
+ dif[ks] = 0.f;
+ } else {
+
+/* Reordering successful, solve generalized Sylvester */
+/* equation for R and L, */
+/* A22 * R - L * A11 = A12 */
+/* B22 * R - L * B11 = B12, */
+/* and compute estimate of Difl((A11,B11), (A22, B22)). */
+
+ n1 = 1;
+ if (work[2] != 0.f) {
+ n1 = 2;
+ }
+ n2 = *n - n1;
+ if (n2 == 0) {
+ dif[ks] = cond;
+ } else {
+ i__ = *n * *n + 1;
+ iz = (*n << 1) * *n + 1;
+ i__2 = *lwork - (*n << 1) * *n;
+ stgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n,
+ &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1
+ + i__], n, &work[i__], n, &work[n1 + i__], n, &
+ scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1],
+ &ierr);
+
+ if (pair) {
+/* Computing MIN */
+ r__1 = dmax(1.f,alprqt) * dif[ks];
+ dif[ks] = dmin(r__1,cond);
+ }
+ }
+ }
+ if (pair) {
+ dif[ks + 1] = dif[ks];
+ }
+ }
+ if (pair) {
+ ++ks;
+ }
+
+L20:
+ ;
+ }
+ work[1] = (real) lwmin;
+ return 0;
+
+/* End of STGSNA */
+
+} /* stgsna_ */