diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stgsna.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stgsna.c')
-rw-r--r-- | contrib/libs/clapack/stgsna.c | 691 |
1 files changed, 691 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stgsna.c b/contrib/libs/clapack/stgsna.c new file mode 100644 index 0000000000..d469299e31 --- /dev/null +++ b/contrib/libs/clapack/stgsna.c @@ -0,0 +1,691 @@ +/* stgsna.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static real c_b19 = 1.f; +static real c_b21 = 0.f; +static integer c__2 = 2; +static logical c_false = FALSE_; +static integer c__3 = 3; + +/* Subroutine */ int stgsna_(char *job, char *howmny, logical *select, + integer *n, real *a, integer *lda, real *b, integer *ldb, real *vl, + integer *ldvl, real *vr, integer *ldvr, real *s, real *dif, integer * + mm, integer *m, real *work, integer *lwork, integer *iwork, integer * + info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, + vr_offset, i__1, i__2; + real r__1, r__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, k; + real c1, c2; + integer n1, n2, ks, iz; + real eps, beta, cond; + logical pair; + integer ierr; + real uhav, uhbv; + integer ifst; + real lnrm; + extern doublereal sdot_(integer *, real *, integer *, real *, integer *); + integer ilst; + real rnrm; + extern /* Subroutine */ int slag2_(real *, integer *, real *, integer *, + real *, real *, real *, real *, real *, real *); + extern doublereal snrm2_(integer *, real *, integer *); + real root1, root2, scale; + extern logical lsame_(char *, char *); + real uhavi, uhbvi; + extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, + real *, integer *, real *, integer *, real *, real *, integer *); + real tmpii; + integer lwmin; + logical wants; + real tmpir, tmpri, dummy[1], tmprr; + extern doublereal slapy2_(real *, real *); + real dummy1[1], alphai, alphar; + extern doublereal slamch_(char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + logical wantbh, wantdf; + extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, + integer *, real *, integer *), stgexc_(logical *, logical + *, integer *, real *, integer *, real *, integer *, real *, + integer *, real *, integer *, integer *, integer *, real *, + integer *, integer *); + logical somcon; + real alprqt, smlnum; + logical lquery; + extern /* Subroutine */ int stgsyl_(char *, integer *, integer *, integer + *, real *, integer *, real *, integer *, real *, integer *, real * +, integer *, real *, integer *, real *, integer *, real *, real *, + real *, integer *, integer *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* STGSNA estimates reciprocal condition numbers for specified */ +/* eigenvalues and/or eigenvectors of a matrix pair (A, B) in */ +/* generalized real Schur canonical form (or of any matrix pair */ +/* (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where */ +/* Z' denotes the transpose of Z. */ + +/* (A, B) must be in generalized real Schur form (as returned by SGGES), */ +/* i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */ +/* blocks. B is upper triangular. */ + + +/* Arguments */ +/* ========= */ + +/* JOB (input) CHARACTER*1 */ +/* Specifies whether condition numbers are required for */ +/* eigenvalues (S) or eigenvectors (DIF): */ +/* = 'E': for eigenvalues only (S); */ +/* = 'V': for eigenvectors only (DIF); */ +/* = 'B': for both eigenvalues and eigenvectors (S and DIF). */ + +/* HOWMNY (input) CHARACTER*1 */ +/* = 'A': compute condition numbers for all eigenpairs; */ +/* = 'S': compute condition numbers for selected eigenpairs */ +/* specified by the array SELECT. */ + +/* SELECT (input) LOGICAL array, dimension (N) */ +/* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */ +/* condition numbers are required. To select condition numbers */ +/* for the eigenpair corresponding to a real eigenvalue w(j), */ +/* SELECT(j) must be set to .TRUE.. To select condition numbers */ +/* corresponding to a complex conjugate pair of eigenvalues w(j) */ +/* and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */ +/* set to .TRUE.. */ +/* If HOWMNY = 'A', SELECT is not referenced. */ + +/* N (input) INTEGER */ +/* The order of the square matrix pair (A, B). N >= 0. */ + +/* A (input) REAL array, dimension (LDA,N) */ +/* The upper quasi-triangular matrix A in the pair (A,B). */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* B (input) REAL array, dimension (LDB,N) */ +/* The upper triangular matrix B in the pair (A,B). */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* VL (input) REAL array, dimension (LDVL,M) */ +/* If JOB = 'E' or 'B', VL must contain left eigenvectors of */ +/* (A, B), corresponding to the eigenpairs specified by HOWMNY */ +/* and SELECT. The eigenvectors must be stored in consecutive */ +/* columns of VL, as returned by STGEVC. */ +/* If JOB = 'V', VL is not referenced. */ + +/* LDVL (input) INTEGER */ +/* The leading dimension of the array VL. LDVL >= 1. */ +/* If JOB = 'E' or 'B', LDVL >= N. */ + +/* VR (input) REAL array, dimension (LDVR,M) */ +/* If JOB = 'E' or 'B', VR must contain right eigenvectors of */ +/* (A, B), corresponding to the eigenpairs specified by HOWMNY */ +/* and SELECT. The eigenvectors must be stored in consecutive */ +/* columns ov VR, as returned by STGEVC. */ +/* If JOB = 'V', VR is not referenced. */ + +/* LDVR (input) INTEGER */ +/* The leading dimension of the array VR. LDVR >= 1. */ +/* If JOB = 'E' or 'B', LDVR >= N. */ + +/* S (output) REAL array, dimension (MM) */ +/* If JOB = 'E' or 'B', the reciprocal condition numbers of the */ +/* selected eigenvalues, stored in consecutive elements of the */ +/* array. For a complex conjugate pair of eigenvalues two */ +/* consecutive elements of S are set to the same value. Thus */ +/* S(j), DIF(j), and the j-th columns of VL and VR all */ +/* correspond to the same eigenpair (but not in general the */ +/* j-th eigenpair, unless all eigenpairs are selected). */ +/* If JOB = 'V', S is not referenced. */ + +/* DIF (output) REAL array, dimension (MM) */ +/* If JOB = 'V' or 'B', the estimated reciprocal condition */ +/* numbers of the selected eigenvectors, stored in consecutive */ +/* elements of the array. For a complex eigenvector two */ +/* consecutive elements of DIF are set to the same value. If */ +/* the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */ +/* is set to 0; this can only occur when the true value would be */ +/* very small anyway. */ +/* If JOB = 'E', DIF is not referenced. */ + +/* MM (input) INTEGER */ +/* The number of elements in the arrays S and DIF. MM >= M. */ + +/* M (output) INTEGER */ +/* The number of elements of the arrays S and DIF used to store */ +/* the specified condition numbers; for each selected real */ +/* eigenvalue one element is used, and for each selected complex */ +/* conjugate pair of eigenvalues, two elements are used. */ +/* If HOWMNY = 'A', M is set to N. */ + +/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,N). */ +/* If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* IWORK (workspace) INTEGER array, dimension (N + 6) */ +/* If JOB = 'E', IWORK is not referenced. */ + +/* INFO (output) INTEGER */ +/* =0: Successful exit */ +/* <0: If INFO = -i, the i-th argument had an illegal value */ + + +/* Further Details */ +/* =============== */ + +/* The reciprocal of the condition number of a generalized eigenvalue */ +/* w = (a, b) is defined as */ + +/* S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v)) */ + +/* where u and v are the left and right eigenvectors of (A, B) */ +/* corresponding to w; |z| denotes the absolute value of the complex */ +/* number, and norm(u) denotes the 2-norm of the vector u. */ +/* The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv) */ +/* of the matrix pair (A, B). If both a and b equal zero, then (A B) is */ +/* singular and S(I) = -1 is returned. */ + +/* An approximate error bound on the chordal distance between the i-th */ +/* computed generalized eigenvalue w and the corresponding exact */ +/* eigenvalue lambda is */ + +/* chord(w, lambda) <= EPS * norm(A, B) / S(I) */ + +/* where EPS is the machine precision. */ + +/* The reciprocal of the condition number DIF(i) of right eigenvector u */ +/* and left eigenvector v corresponding to the generalized eigenvalue w */ +/* is defined as follows: */ + +/* a) If the i-th eigenvalue w = (a,b) is real */ + +/* Suppose U and V are orthogonal transformations such that */ + +/* U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 */ +/* ( 0 S22 ),( 0 T22 ) n-1 */ +/* 1 n-1 1 n-1 */ + +/* Then the reciprocal condition number DIF(i) is */ + +/* Difl((a, b), (S22, T22)) = sigma-min( Zl ), */ + +/* where sigma-min(Zl) denotes the smallest singular value of the */ +/* 2(n-1)-by-2(n-1) matrix */ + +/* Zl = [ kron(a, In-1) -kron(1, S22) ] */ +/* [ kron(b, In-1) -kron(1, T22) ] . */ + +/* Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */ +/* Kronecker product between the matrices X and Y. */ + +/* Note that if the default method for computing DIF(i) is wanted */ +/* (see SLATDF), then the parameter DIFDRI (see below) should be */ +/* changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). */ +/* See STGSYL for more details. */ + +/* b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */ + +/* Suppose U and V are orthogonal transformations such that */ + +/* U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 */ +/* ( 0 S22 ),( 0 T22) n-2 */ +/* 2 n-2 2 n-2 */ + +/* and (S11, T11) corresponds to the complex conjugate eigenvalue */ +/* pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */ +/* that */ + +/* U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 ) */ +/* ( 0 s22 ) ( 0 t22 ) */ + +/* where the generalized eigenvalues w = s11/t11 and */ +/* conjg(w) = s22/t22. */ + +/* Then the reciprocal condition number DIF(i) is bounded by */ + +/* min( d1, max( 1, |real(s11)/real(s22)| )*d2 ) */ + +/* where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where */ +/* Z1 is the complex 2-by-2 matrix */ + +/* Z1 = [ s11 -s22 ] */ +/* [ t11 -t22 ], */ + +/* This is done by computing (using real arithmetic) the */ +/* roots of the characteristical polynomial det(Z1' * Z1 - lambda I), */ +/* where Z1' denotes the conjugate transpose of Z1 and det(X) denotes */ +/* the determinant of X. */ + +/* and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */ +/* upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2) */ + +/* Z2 = [ kron(S11', In-2) -kron(I2, S22) ] */ +/* [ kron(T11', In-2) -kron(I2, T22) ] */ + +/* Note that if the default method for computing DIF is wanted (see */ +/* SLATDF), then the parameter DIFDRI (see below) should be changed */ +/* from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL */ +/* for more details. */ + +/* For each eigenvalue/vector specified by SELECT, DIF stores a */ +/* Frobenius norm-based estimate of Difl. */ + +/* An approximate error bound for the i-th computed eigenvector VL(i) or */ +/* VR(i) is given by */ + +/* EPS * norm(A, B) / DIF(i). */ + +/* See ref. [2-3] for more details and further references. */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* References */ +/* ========== */ + +/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */ +/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */ +/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */ +/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */ + +/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */ +/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */ +/* Estimation: Theory, Algorithms and Software, */ +/* Report UMINF - 94.04, Department of Computing Science, Umea */ +/* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */ +/* Note 87. To appear in Numerical Algorithms, 1996. */ + +/* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */ +/* for Solving the Generalized Sylvester Equation and Estimating the */ +/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */ +/* Department of Computing Science, Umea University, S-901 87 Umea, */ +/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */ +/* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */ +/* No 1, 1996. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and test the input parameters */ + + /* Parameter adjustments */ + --select; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --s; + --dif; + --work; + --iwork; + + /* Function Body */ + wantbh = lsame_(job, "B"); + wants = lsame_(job, "E") || wantbh; + wantdf = lsame_(job, "V") || wantbh; + + somcon = lsame_(howmny, "S"); + + *info = 0; + lquery = *lwork == -1; + + if (! wants && ! wantdf) { + *info = -1; + } else if (! lsame_(howmny, "A") && ! somcon) { + *info = -2; + } else if (*n < 0) { + *info = -4; + } else if (*lda < max(1,*n)) { + *info = -6; + } else if (*ldb < max(1,*n)) { + *info = -8; + } else if (wants && *ldvl < *n) { + *info = -10; + } else if (wants && *ldvr < *n) { + *info = -12; + } else { + +/* Set M to the number of eigenpairs for which condition numbers */ +/* are required, and test MM. */ + + if (somcon) { + *m = 0; + pair = FALSE_; + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + if (pair) { + pair = FALSE_; + } else { + if (k < *n) { + if (a[k + 1 + k * a_dim1] == 0.f) { + if (select[k]) { + ++(*m); + } + } else { + pair = TRUE_; + if (select[k] || select[k + 1]) { + *m += 2; + } + } + } else { + if (select[*n]) { + ++(*m); + } + } + } +/* L10: */ + } + } else { + *m = *n; + } + + if (*n == 0) { + lwmin = 1; + } else if (lsame_(job, "V") || lsame_(job, + "B")) { + lwmin = (*n << 1) * (*n + 2) + 16; + } else { + lwmin = *n; + } + work[1] = (real) lwmin; + + if (*mm < *m) { + *info = -15; + } else if (*lwork < lwmin && ! lquery) { + *info = -18; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("STGSNA", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Get machine constants */ + + eps = slamch_("P"); + smlnum = slamch_("S") / eps; + ks = 0; + pair = FALSE_; + + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + +/* Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */ + + if (pair) { + pair = FALSE_; + goto L20; + } else { + if (k < *n) { + pair = a[k + 1 + k * a_dim1] != 0.f; + } + } + +/* Determine whether condition numbers are required for the k-th */ +/* eigenpair. */ + + if (somcon) { + if (pair) { + if (! select[k] && ! select[k + 1]) { + goto L20; + } + } else { + if (! select[k]) { + goto L20; + } + } + } + + ++ks; + + if (wants) { + +/* Compute the reciprocal condition number of the k-th */ +/* eigenvalue. */ + + if (pair) { + +/* Complex eigenvalue pair. */ + + r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1); + r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1); + rnrm = slapy2_(&r__1, &r__2); + r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1); + r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1); + lnrm = slapy2_(&r__1, &r__2); + sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 + + 1], &c__1, &c_b21, &work[1], &c__1); + tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], & + c__1); + tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], + &c__1); + sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) * + vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1); + tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], + &c__1); + tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], & + c__1); + uhav = tmprr + tmpii; + uhavi = tmpir - tmpri; + sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 + + 1], &c__1, &c_b21, &work[1], &c__1); + tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], & + c__1); + tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], + &c__1); + sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) * + vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1); + tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], + &c__1); + tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], & + c__1); + uhbv = tmprr + tmpii; + uhbvi = tmpir - tmpri; + uhav = slapy2_(&uhav, &uhavi); + uhbv = slapy2_(&uhbv, &uhbvi); + cond = slapy2_(&uhav, &uhbv); + s[ks] = cond / (rnrm * lnrm); + s[ks + 1] = s[ks]; + + } else { + +/* Real eigenvalue. */ + + rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1); + lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1); + sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 + + 1], &c__1, &c_b21, &work[1], &c__1); + uhav = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1) + ; + sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 + + 1], &c__1, &c_b21, &work[1], &c__1); + uhbv = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1) + ; + cond = slapy2_(&uhav, &uhbv); + if (cond == 0.f) { + s[ks] = -1.f; + } else { + s[ks] = cond / (rnrm * lnrm); + } + } + } + + if (wantdf) { + if (*n == 1) { + dif[ks] = slapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]); + goto L20; + } + +/* Estimate the reciprocal condition number of the k-th */ +/* eigenvectors. */ + if (pair) { + +/* Copy the 2-by 2 pencil beginning at (A(k,k), B(k, k)). */ +/* Compute the eigenvalue(s) at position K. */ + + work[1] = a[k + k * a_dim1]; + work[2] = a[k + 1 + k * a_dim1]; + work[3] = a[k + (k + 1) * a_dim1]; + work[4] = a[k + 1 + (k + 1) * a_dim1]; + work[5] = b[k + k * b_dim1]; + work[6] = b[k + 1 + k * b_dim1]; + work[7] = b[k + (k + 1) * b_dim1]; + work[8] = b[k + 1 + (k + 1) * b_dim1]; + r__1 = smlnum * eps; + slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta, dummy1, + &alphar, dummy, &alphai); + alprqt = 1.f; + c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.f; + c2 = beta * 4.f * beta * alphai * alphai; + root1 = c1 + sqrt(c1 * c1 - c2 * 4.f); + root2 = c2 / root1; + root1 /= 2.f; +/* Computing MIN */ + r__1 = sqrt(root1), r__2 = sqrt(root2); + cond = dmin(r__1,r__2); + } + +/* Copy the matrix (A, B) to the array WORK and swap the */ +/* diagonal block beginning at A(k,k) to the (1,1) position. */ + + slacpy_("Full", n, n, &a[a_offset], lda, &work[1], n); + slacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n); + ifst = k; + ilst = 1; + + i__2 = *lwork - (*n << 1) * *n; + stgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n, + dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * * + n << 1) + 1], &i__2, &ierr); + + if (ierr > 0) { + +/* Ill-conditioned problem - swap rejected. */ + + dif[ks] = 0.f; + } else { + +/* Reordering successful, solve generalized Sylvester */ +/* equation for R and L, */ +/* A22 * R - L * A11 = A12 */ +/* B22 * R - L * B11 = B12, */ +/* and compute estimate of Difl((A11,B11), (A22, B22)). */ + + n1 = 1; + if (work[2] != 0.f) { + n1 = 2; + } + n2 = *n - n1; + if (n2 == 0) { + dif[ks] = cond; + } else { + i__ = *n * *n + 1; + iz = (*n << 1) * *n + 1; + i__2 = *lwork - (*n << 1) * *n; + stgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n, + &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1 + + i__], n, &work[i__], n, &work[n1 + i__], n, & + scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1], + &ierr); + + if (pair) { +/* Computing MIN */ + r__1 = dmax(1.f,alprqt) * dif[ks]; + dif[ks] = dmin(r__1,cond); + } + } + } + if (pair) { + dif[ks + 1] = dif[ks]; + } + } + if (pair) { + ++ks; + } + +L20: + ; + } + work[1] = (real) lwmin; + return 0; + +/* End of STGSNA */ + +} /* stgsna_ */ |