diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stfttp.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stfttp.c')
-rw-r--r-- | contrib/libs/clapack/stfttp.c | 514 |
1 files changed, 514 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stfttp.c b/contrib/libs/clapack/stfttp.c new file mode 100644 index 0000000000..2c10db5c5e --- /dev/null +++ b/contrib/libs/clapack/stfttp.c @@ -0,0 +1,514 @@ +/* stfttp.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int stfttp_(char *transr, char *uplo, integer *n, real *arf, + real *ap, integer *info) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + + /* Local variables */ + integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp; + logical normaltransr; + extern logical lsame_(char *, char *); + logical lower; + extern /* Subroutine */ int xerbla_(char *, integer *); + logical nisodd; + + +/* -- LAPACK routine (version 3.2) -- */ + +/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */ +/* -- November 2008 -- */ + +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ + +/* .. */ +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* STFTTP copies a triangular matrix A from rectangular full packed */ +/* format (TF) to standard packed format (TP). */ + +/* Arguments */ +/* ========= */ + +/* TRANSR (input) CHARACTER */ +/* = 'N': ARF is in Normal format; */ +/* = 'T': ARF is in Transpose format; */ + +/* UPLO (input) CHARACTER */ +/* = 'U': A is upper triangular; */ +/* = 'L': A is lower triangular. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* ARF (input) REAL array, dimension ( N*(N+1)/2 ), */ +/* On entry, the upper or lower triangular matrix A stored in */ +/* RFP format. For a further discussion see Notes below. */ + +/* AP (output) REAL array, dimension ( N*(N+1)/2 ), */ +/* On exit, the upper or lower triangular matrix A, packed */ +/* columnwise in a linear array. The j-th column of A is stored */ +/* in the array AP as follows: */ +/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ +/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Notes */ +/* ===== */ + +/* We first consider Rectangular Full Packed (RFP) Format when N is */ +/* even. We give an example where N = 6. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 05 00 */ +/* 11 12 13 14 15 10 11 */ +/* 22 23 24 25 20 21 22 */ +/* 33 34 35 30 31 32 33 */ +/* 44 45 40 41 42 43 44 */ +/* 55 50 51 52 53 54 55 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */ +/* the transpose of the first three columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */ +/* the transpose of the last three columns of AP lower. */ +/* This covers the case N even and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* 03 04 05 33 43 53 */ +/* 13 14 15 00 44 54 */ +/* 23 24 25 10 11 55 */ +/* 33 34 35 20 21 22 */ +/* 00 44 45 30 31 32 */ +/* 01 11 55 40 41 42 */ +/* 02 12 22 50 51 52 */ + +/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ +/* transpose of RFP A above. One therefore gets: */ + + +/* RFP A RFP A */ + +/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */ +/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */ +/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */ + + +/* We first consider Rectangular Full Packed (RFP) Format when N is */ +/* odd. We give an example where N = 5. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 00 */ +/* 11 12 13 14 10 11 */ +/* 22 23 24 20 21 22 */ +/* 33 34 30 31 32 33 */ +/* 44 40 41 42 43 44 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */ +/* the transpose of the first two columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */ +/* the transpose of the last two columns of AP lower. */ +/* This covers the case N odd and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* 02 03 04 00 33 43 */ +/* 12 13 14 10 11 44 */ +/* 22 23 24 20 21 22 */ +/* 00 33 34 30 31 32 */ +/* 01 11 44 40 41 42 */ + +/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ +/* transpose of RFP A above. One therefore gets: */ + +/* RFP A RFP A */ + +/* 02 12 22 00 01 00 10 20 30 40 50 */ +/* 03 13 23 33 11 33 11 21 31 41 51 */ +/* 04 14 24 34 44 43 44 22 32 42 52 */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + *info = 0; + normaltransr = lsame_(transr, "N"); + lower = lsame_(uplo, "L"); + if (! normaltransr && ! lsame_(transr, "T")) { + *info = -1; + } else if (! lower && ! lsame_(uplo, "U")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("STFTTP", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (*n == 1) { + if (normaltransr) { + ap[0] = arf[0]; + } else { + ap[0] = arf[0]; + } + return 0; + } + +/* Size of array ARF(0:NT-1) */ + + nt = *n * (*n + 1) / 2; + +/* Set N1 and N2 depending on LOWER */ + + if (lower) { + n2 = *n / 2; + n1 = *n - n2; + } else { + n1 = *n / 2; + n2 = *n - n1; + } + +/* If N is odd, set NISODD = .TRUE. */ +/* If N is even, set K = N/2 and NISODD = .FALSE. */ + +/* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */ +/* where noe = 0 if n is even, noe = 1 if n is odd */ + + if (*n % 2 == 0) { + k = *n / 2; + nisodd = FALSE_; + lda = *n + 1; + } else { + nisodd = TRUE_; + lda = *n; + } + +/* ARF^C has lda rows and n+1-noe cols */ + + if (! normaltransr) { + lda = (*n + 1) / 2; + } + +/* start execution: there are eight cases */ + + if (nisodd) { + +/* N is odd */ + + if (normaltransr) { + +/* N is odd and TRANSR = 'N' */ + + if (lower) { + +/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */ +/* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */ +/* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n */ + + ijp = 0; + jp = 0; + i__1 = n2; + for (j = 0; j <= i__1; ++j) { + i__2 = *n - 1; + for (i__ = j; i__ <= i__2; ++i__) { + ij = i__ + jp; + ap[ijp] = arf[ij]; + ++ijp; + } + jp += lda; + } + i__1 = n2 - 1; + for (i__ = 0; i__ <= i__1; ++i__) { + i__2 = n2; + for (j = i__ + 1; j <= i__2; ++j) { + ij = i__ + j * lda; + ap[ijp] = arf[ij]; + ++ijp; + } + } + + } else { + +/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */ +/* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */ +/* T1 -> a(n2), T2 -> a(n1), S -> a(0) */ + + ijp = 0; + i__1 = n1 - 1; + for (j = 0; j <= i__1; ++j) { + ij = n2 + j; + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + ap[ijp] = arf[ij]; + ++ijp; + ij += lda; + } + } + js = 0; + i__1 = *n - 1; + for (j = n1; j <= i__1; ++j) { + ij = js; + i__2 = js + j; + for (ij = js; ij <= i__2; ++ij) { + ap[ijp] = arf[ij]; + ++ijp; + } + js += lda; + } + + } + + } else { + +/* N is odd and TRANSR = 'T' */ + + if (lower) { + +/* SRPA for LOWER, TRANSPOSE and N is odd */ +/* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */ +/* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */ + + ijp = 0; + i__1 = n2; + for (i__ = 0; i__ <= i__1; ++i__) { + i__2 = *n * lda - 1; + i__3 = lda; + for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <= + i__2; ij += i__3) { + ap[ijp] = arf[ij]; + ++ijp; + } + } + js = 1; + i__1 = n2 - 1; + for (j = 0; j <= i__1; ++j) { + i__3 = js + n2 - j - 1; + for (ij = js; ij <= i__3; ++ij) { + ap[ijp] = arf[ij]; + ++ijp; + } + js = js + lda + 1; + } + + } else { + +/* SRPA for UPPER, TRANSPOSE and N is odd */ +/* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */ +/* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */ + + ijp = 0; + js = n2 * lda; + i__1 = n1 - 1; + for (j = 0; j <= i__1; ++j) { + i__3 = js + j; + for (ij = js; ij <= i__3; ++ij) { + ap[ijp] = arf[ij]; + ++ijp; + } + js += lda; + } + i__1 = n1; + for (i__ = 0; i__ <= i__1; ++i__) { + i__3 = i__ + (n1 + i__) * lda; + i__2 = lda; + for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij += + i__2) { + ap[ijp] = arf[ij]; + ++ijp; + } + } + + } + + } + + } else { + +/* N is even */ + + if (normaltransr) { + +/* N is even and TRANSR = 'N' */ + + if (lower) { + +/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ +/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */ +/* T1 -> a(1), T2 -> a(0), S -> a(k+1) */ + + ijp = 0; + jp = 0; + i__1 = k - 1; + for (j = 0; j <= i__1; ++j) { + i__2 = *n - 1; + for (i__ = j; i__ <= i__2; ++i__) { + ij = i__ + 1 + jp; + ap[ijp] = arf[ij]; + ++ijp; + } + jp += lda; + } + i__1 = k - 1; + for (i__ = 0; i__ <= i__1; ++i__) { + i__2 = k - 1; + for (j = i__; j <= i__2; ++j) { + ij = i__ + j * lda; + ap[ijp] = arf[ij]; + ++ijp; + } + } + + } else { + +/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ +/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */ +/* T1 -> a(k+1), T2 -> a(k), S -> a(0) */ + + ijp = 0; + i__1 = k - 1; + for (j = 0; j <= i__1; ++j) { + ij = k + 1 + j; + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + ap[ijp] = arf[ij]; + ++ijp; + ij += lda; + } + } + js = 0; + i__1 = *n - 1; + for (j = k; j <= i__1; ++j) { + ij = js; + i__2 = js + j; + for (ij = js; ij <= i__2; ++ij) { + ap[ijp] = arf[ij]; + ++ijp; + } + js += lda; + } + + } + + } else { + +/* N is even and TRANSR = 'T' */ + + if (lower) { + +/* SRPA for LOWER, TRANSPOSE and N is even (see paper) */ +/* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */ +/* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */ + + ijp = 0; + i__1 = k - 1; + for (i__ = 0; i__ <= i__1; ++i__) { + i__2 = (*n + 1) * lda - 1; + i__3 = lda; + for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 : + ij <= i__2; ij += i__3) { + ap[ijp] = arf[ij]; + ++ijp; + } + } + js = 0; + i__1 = k - 1; + for (j = 0; j <= i__1; ++j) { + i__3 = js + k - j - 1; + for (ij = js; ij <= i__3; ++ij) { + ap[ijp] = arf[ij]; + ++ijp; + } + js = js + lda + 1; + } + + } else { + +/* SRPA for UPPER, TRANSPOSE and N is even (see paper) */ +/* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */ +/* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */ + + ijp = 0; + js = (k + 1) * lda; + i__1 = k - 1; + for (j = 0; j <= i__1; ++j) { + i__3 = js + j; + for (ij = js; ij <= i__3; ++ij) { + ap[ijp] = arf[ij]; + ++ijp; + } + js += lda; + } + i__1 = k - 1; + for (i__ = 0; i__ <= i__1; ++i__) { + i__3 = i__ + (k + i__) * lda; + i__2 = lda; + for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij += + i__2) { + ap[ijp] = arf[ij]; + ++ijp; + } + } + + } + + } + + } + + return 0; + +/* End of STFTTP */ + +} /* stfttp_ */ |