aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/stfttp.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stfttp.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stfttp.c')
-rw-r--r--contrib/libs/clapack/stfttp.c514
1 files changed, 514 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stfttp.c b/contrib/libs/clapack/stfttp.c
new file mode 100644
index 0000000000..2c10db5c5e
--- /dev/null
+++ b/contrib/libs/clapack/stfttp.c
@@ -0,0 +1,514 @@
+/* stfttp.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int stfttp_(char *transr, char *uplo, integer *n, real *arf,
+ real *ap, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+
+ /* Local variables */
+ integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp;
+ logical normaltransr;
+ extern logical lsame_(char *, char *);
+ logical lower;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ logical nisodd;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+
+/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
+/* -- November 2008 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+
+/* .. */
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* STFTTP copies a triangular matrix A from rectangular full packed */
+/* format (TF) to standard packed format (TP). */
+
+/* Arguments */
+/* ========= */
+
+/* TRANSR (input) CHARACTER */
+/* = 'N': ARF is in Normal format; */
+/* = 'T': ARF is in Transpose format; */
+
+/* UPLO (input) CHARACTER */
+/* = 'U': A is upper triangular; */
+/* = 'L': A is lower triangular. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* ARF (input) REAL array, dimension ( N*(N+1)/2 ), */
+/* On entry, the upper or lower triangular matrix A stored in */
+/* RFP format. For a further discussion see Notes below. */
+
+/* AP (output) REAL array, dimension ( N*(N+1)/2 ), */
+/* On exit, the upper or lower triangular matrix A, packed */
+/* columnwise in a linear array. The j-th column of A is stored */
+/* in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Notes */
+/* ===== */
+
+/* We first consider Rectangular Full Packed (RFP) Format when N is */
+/* even. We give an example where N = 6. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 05 00 */
+/* 11 12 13 14 15 10 11 */
+/* 22 23 24 25 20 21 22 */
+/* 33 34 35 30 31 32 33 */
+/* 44 45 40 41 42 43 44 */
+/* 55 50 51 52 53 54 55 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
+/* the transpose of the first three columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
+/* the transpose of the last three columns of AP lower. */
+/* This covers the case N even and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* 03 04 05 33 43 53 */
+/* 13 14 15 00 44 54 */
+/* 23 24 25 10 11 55 */
+/* 33 34 35 20 21 22 */
+/* 00 44 45 30 31 32 */
+/* 01 11 55 40 41 42 */
+/* 02 12 22 50 51 52 */
+
+/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
+/* transpose of RFP A above. One therefore gets: */
+
+
+/* RFP A RFP A */
+
+/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
+/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
+/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
+
+
+/* We first consider Rectangular Full Packed (RFP) Format when N is */
+/* odd. We give an example where N = 5. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 00 */
+/* 11 12 13 14 10 11 */
+/* 22 23 24 20 21 22 */
+/* 33 34 30 31 32 33 */
+/* 44 40 41 42 43 44 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
+/* the transpose of the first two columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
+/* the transpose of the last two columns of AP lower. */
+/* This covers the case N odd and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* 02 03 04 00 33 43 */
+/* 12 13 14 10 11 44 */
+/* 22 23 24 20 21 22 */
+/* 00 33 34 30 31 32 */
+/* 01 11 44 40 41 42 */
+
+/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
+/* transpose of RFP A above. One therefore gets: */
+
+/* RFP A RFP A */
+
+/* 02 12 22 00 01 00 10 20 30 40 50 */
+/* 03 13 23 33 11 33 11 21 31 41 51 */
+/* 04 14 24 34 44 43 44 22 32 42 52 */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ *info = 0;
+ normaltransr = lsame_(transr, "N");
+ lower = lsame_(uplo, "L");
+ if (! normaltransr && ! lsame_(transr, "T")) {
+ *info = -1;
+ } else if (! lower && ! lsame_(uplo, "U")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("STFTTP", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ if (normaltransr) {
+ ap[0] = arf[0];
+ } else {
+ ap[0] = arf[0];
+ }
+ return 0;
+ }
+
+/* Size of array ARF(0:NT-1) */
+
+ nt = *n * (*n + 1) / 2;
+
+/* Set N1 and N2 depending on LOWER */
+
+ if (lower) {
+ n2 = *n / 2;
+ n1 = *n - n2;
+ } else {
+ n1 = *n / 2;
+ n2 = *n - n1;
+ }
+
+/* If N is odd, set NISODD = .TRUE. */
+/* If N is even, set K = N/2 and NISODD = .FALSE. */
+
+/* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */
+/* where noe = 0 if n is even, noe = 1 if n is odd */
+
+ if (*n % 2 == 0) {
+ k = *n / 2;
+ nisodd = FALSE_;
+ lda = *n + 1;
+ } else {
+ nisodd = TRUE_;
+ lda = *n;
+ }
+
+/* ARF^C has lda rows and n+1-noe cols */
+
+ if (! normaltransr) {
+ lda = (*n + 1) / 2;
+ }
+
+/* start execution: there are eight cases */
+
+ if (nisodd) {
+
+/* N is odd */
+
+ if (normaltransr) {
+
+/* N is odd and TRANSR = 'N' */
+
+ if (lower) {
+
+/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
+/* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
+/* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n */
+
+ ijp = 0;
+ jp = 0;
+ i__1 = n2;
+ for (j = 0; j <= i__1; ++j) {
+ i__2 = *n - 1;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ ij = i__ + jp;
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ jp += lda;
+ }
+ i__1 = n2 - 1;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ i__2 = n2;
+ for (j = i__ + 1; j <= i__2; ++j) {
+ ij = i__ + j * lda;
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ }
+
+ } else {
+
+/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
+/* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
+/* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
+
+ ijp = 0;
+ i__1 = n1 - 1;
+ for (j = 0; j <= i__1; ++j) {
+ ij = n2 + j;
+ i__2 = j;
+ for (i__ = 0; i__ <= i__2; ++i__) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ ij += lda;
+ }
+ }
+ js = 0;
+ i__1 = *n - 1;
+ for (j = n1; j <= i__1; ++j) {
+ ij = js;
+ i__2 = js + j;
+ for (ij = js; ij <= i__2; ++ij) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ js += lda;
+ }
+
+ }
+
+ } else {
+
+/* N is odd and TRANSR = 'T' */
+
+ if (lower) {
+
+/* SRPA for LOWER, TRANSPOSE and N is odd */
+/* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
+/* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
+
+ ijp = 0;
+ i__1 = n2;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ i__2 = *n * lda - 1;
+ i__3 = lda;
+ for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <=
+ i__2; ij += i__3) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ }
+ js = 1;
+ i__1 = n2 - 1;
+ for (j = 0; j <= i__1; ++j) {
+ i__3 = js + n2 - j - 1;
+ for (ij = js; ij <= i__3; ++ij) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ js = js + lda + 1;
+ }
+
+ } else {
+
+/* SRPA for UPPER, TRANSPOSE and N is odd */
+/* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
+/* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
+
+ ijp = 0;
+ js = n2 * lda;
+ i__1 = n1 - 1;
+ for (j = 0; j <= i__1; ++j) {
+ i__3 = js + j;
+ for (ij = js; ij <= i__3; ++ij) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ js += lda;
+ }
+ i__1 = n1;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ i__3 = i__ + (n1 + i__) * lda;
+ i__2 = lda;
+ for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
+ i__2) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ }
+
+ }
+
+ }
+
+ } else {
+
+/* N is even */
+
+ if (normaltransr) {
+
+/* N is even and TRANSR = 'N' */
+
+ if (lower) {
+
+/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
+/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
+/* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
+
+ ijp = 0;
+ jp = 0;
+ i__1 = k - 1;
+ for (j = 0; j <= i__1; ++j) {
+ i__2 = *n - 1;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ ij = i__ + 1 + jp;
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ jp += lda;
+ }
+ i__1 = k - 1;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ i__2 = k - 1;
+ for (j = i__; j <= i__2; ++j) {
+ ij = i__ + j * lda;
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ }
+
+ } else {
+
+/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
+/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
+/* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
+
+ ijp = 0;
+ i__1 = k - 1;
+ for (j = 0; j <= i__1; ++j) {
+ ij = k + 1 + j;
+ i__2 = j;
+ for (i__ = 0; i__ <= i__2; ++i__) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ ij += lda;
+ }
+ }
+ js = 0;
+ i__1 = *n - 1;
+ for (j = k; j <= i__1; ++j) {
+ ij = js;
+ i__2 = js + j;
+ for (ij = js; ij <= i__2; ++ij) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ js += lda;
+ }
+
+ }
+
+ } else {
+
+/* N is even and TRANSR = 'T' */
+
+ if (lower) {
+
+/* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
+/* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
+/* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
+
+ ijp = 0;
+ i__1 = k - 1;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ i__2 = (*n + 1) * lda - 1;
+ i__3 = lda;
+ for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 :
+ ij <= i__2; ij += i__3) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ }
+ js = 0;
+ i__1 = k - 1;
+ for (j = 0; j <= i__1; ++j) {
+ i__3 = js + k - j - 1;
+ for (ij = js; ij <= i__3; ++ij) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ js = js + lda + 1;
+ }
+
+ } else {
+
+/* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
+/* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
+/* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
+
+ ijp = 0;
+ js = (k + 1) * lda;
+ i__1 = k - 1;
+ for (j = 0; j <= i__1; ++j) {
+ i__3 = js + j;
+ for (ij = js; ij <= i__3; ++ij) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ js += lda;
+ }
+ i__1 = k - 1;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ i__3 = i__ + (k + i__) * lda;
+ i__2 = lda;
+ for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
+ i__2) {
+ ap[ijp] = arf[ij];
+ ++ijp;
+ }
+ }
+
+ }
+
+ }
+
+ }
+
+ return 0;
+
+/* End of STFTTP */
+
+} /* stfttp_ */