diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stbrfs.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stbrfs.c')
-rw-r--r-- | contrib/libs/clapack/stbrfs.c | 519 |
1 files changed, 519 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stbrfs.c b/contrib/libs/clapack/stbrfs.c new file mode 100644 index 0000000000..3ef7749d2f --- /dev/null +++ b/contrib/libs/clapack/stbrfs.c @@ -0,0 +1,519 @@ +/* stbrfs.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static real c_b19 = -1.f; + +/* Subroutine */ int stbrfs_(char *uplo, char *trans, char *diag, integer *n, + integer *kd, integer *nrhs, real *ab, integer *ldab, real *b, integer + *ldb, real *x, integer *ldx, real *ferr, real *berr, real *work, + integer *iwork, integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, + i__2, i__3, i__4, i__5; + real r__1, r__2, r__3; + + /* Local variables */ + integer i__, j, k; + real s, xk; + integer nz; + real eps; + integer kase; + real safe1, safe2; + extern logical lsame_(char *, char *); + integer isave[3]; + logical upper; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *), stbmv_(char *, char *, char *, integer *, integer *, + real *, integer *, real *, integer *), + stbsv_(char *, char *, char *, integer *, integer *, real *, + integer *, real *, integer *), saxpy_( + integer *, real *, real *, integer *, real *, integer *), slacn2_( + integer *, real *, real *, integer *, real *, integer *, integer * +); + extern doublereal slamch_(char *); + real safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + logical notran; + char transt[1]; + logical nounit; + real lstres; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* STBRFS provides error bounds and backward error estimates for the */ +/* solution to a system of linear equations with a triangular band */ +/* coefficient matrix. */ + +/* The solution matrix X must be computed by STBTRS or some other */ +/* means before entering this routine. STBRFS does not do iterative */ +/* refinement because doing so cannot improve the backward error. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': A is upper triangular; */ +/* = 'L': A is lower triangular. */ + +/* TRANS (input) CHARACTER*1 */ +/* Specifies the form of the system of equations: */ +/* = 'N': A * X = B (No transpose) */ +/* = 'T': A**T * X = B (Transpose) */ +/* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ + +/* DIAG (input) CHARACTER*1 */ +/* = 'N': A is non-unit triangular; */ +/* = 'U': A is unit triangular. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* KD (input) INTEGER */ +/* The number of superdiagonals or subdiagonals of the */ +/* triangular band matrix A. KD >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrices B and X. NRHS >= 0. */ + +/* AB (input) REAL array, dimension (LDAB,N) */ +/* The upper or lower triangular band matrix A, stored in the */ +/* first kd+1 rows of the array. The j-th column of A is stored */ +/* in the j-th column of the array AB as follows: */ +/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ +/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ +/* If DIAG = 'U', the diagonal elements of A are not referenced */ +/* and are assumed to be 1. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KD+1. */ + +/* B (input) REAL array, dimension (LDB,NRHS) */ +/* The right hand side matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* X (input) REAL array, dimension (LDX,NRHS) */ +/* The solution matrix X. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of the array X. LDX >= max(1,N). */ + +/* FERR (output) REAL array, dimension (NRHS) */ +/* The estimated forward error bound for each solution vector */ +/* X(j) (the j-th column of the solution matrix X). */ +/* If XTRUE is the true solution corresponding to X(j), FERR(j) */ +/* is an estimated upper bound for the magnitude of the largest */ +/* element in (X(j) - XTRUE) divided by the magnitude of the */ +/* largest element in X(j). The estimate is as reliable as */ +/* the estimate for RCOND, and is almost always a slight */ +/* overestimate of the true error. */ + +/* BERR (output) REAL array, dimension (NRHS) */ +/* The componentwise relative backward error of each solution */ +/* vector X(j) (i.e., the smallest relative change in */ +/* any element of A or B that makes X(j) an exact solution). */ + +/* WORK (workspace) REAL array, dimension (3*N) */ + +/* IWORK (workspace) INTEGER array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + --ferr; + --berr; + --work; + --iwork; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + notran = lsame_(trans, "N"); + nounit = lsame_(diag, "N"); + + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "T") && ! + lsame_(trans, "C")) { + *info = -2; + } else if (! nounit && ! lsame_(diag, "U")) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*kd < 0) { + *info = -5; + } else if (*nrhs < 0) { + *info = -6; + } else if (*ldab < *kd + 1) { + *info = -8; + } else if (*ldb < max(1,*n)) { + *info = -10; + } else if (*ldx < max(1,*n)) { + *info = -12; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("STBRFS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *nrhs == 0) { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + ferr[j] = 0.f; + berr[j] = 0.f; +/* L10: */ + } + return 0; + } + + if (notran) { + *(unsigned char *)transt = 'T'; + } else { + *(unsigned char *)transt = 'N'; + } + +/* NZ = maximum number of nonzero elements in each row of A, plus 1 */ + + nz = *kd + 2; + eps = slamch_("Epsilon"); + safmin = slamch_("Safe minimum"); + safe1 = nz * safmin; + safe2 = safe1 / eps; + +/* Do for each right hand side */ + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + +/* Compute residual R = B - op(A) * X, */ +/* where op(A) = A or A', depending on TRANS. */ + + scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1); + stbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[*n + 1], + &c__1); + saxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); + +/* Compute componentwise relative backward error from formula */ + +/* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */ + +/* where abs(Z) is the componentwise absolute value of the matrix */ +/* or vector Z. If the i-th component of the denominator is less */ +/* than SAFE2, then SAFE1 is added to the i-th components of the */ +/* numerator and denominator before dividing. */ + + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + work[i__] = (r__1 = b[i__ + j * b_dim1], dabs(r__1)); +/* L20: */ + } + + if (notran) { + +/* Compute abs(A)*abs(X) + abs(B). */ + + if (upper) { + if (nounit) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); +/* Computing MAX */ + i__3 = 1, i__4 = k - *kd; + i__5 = k; + for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) { + work[i__] += (r__1 = ab[*kd + 1 + i__ - k + k * + ab_dim1], dabs(r__1)) * xk; +/* L30: */ + } +/* L40: */ + } + } else { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); +/* Computing MAX */ + i__5 = 1, i__3 = k - *kd; + i__4 = k - 1; + for (i__ = max(i__5,i__3); i__ <= i__4; ++i__) { + work[i__] += (r__1 = ab[*kd + 1 + i__ - k + k * + ab_dim1], dabs(r__1)) * xk; +/* L50: */ + } + work[k] += xk; +/* L60: */ + } + } + } else { + if (nounit) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); +/* Computing MIN */ + i__5 = *n, i__3 = k + *kd; + i__4 = min(i__5,i__3); + for (i__ = k; i__ <= i__4; ++i__) { + work[i__] += (r__1 = ab[i__ + 1 - k + k * ab_dim1] + , dabs(r__1)) * xk; +/* L70: */ + } +/* L80: */ + } + } else { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); +/* Computing MIN */ + i__5 = *n, i__3 = k + *kd; + i__4 = min(i__5,i__3); + for (i__ = k + 1; i__ <= i__4; ++i__) { + work[i__] += (r__1 = ab[i__ + 1 - k + k * ab_dim1] + , dabs(r__1)) * xk; +/* L90: */ + } + work[k] += xk; +/* L100: */ + } + } + } + } else { + +/* Compute abs(A')*abs(X) + abs(B). */ + + if (upper) { + if (nounit) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + s = 0.f; +/* Computing MAX */ + i__4 = 1, i__5 = k - *kd; + i__3 = k; + for (i__ = max(i__4,i__5); i__ <= i__3; ++i__) { + s += (r__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], + dabs(r__1)) * (r__2 = x[i__ + j * x_dim1], + dabs(r__2)); +/* L110: */ + } + work[k] += s; +/* L120: */ + } + } else { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + s = (r__1 = x[k + j * x_dim1], dabs(r__1)); +/* Computing MAX */ + i__3 = 1, i__4 = k - *kd; + i__5 = k - 1; + for (i__ = max(i__3,i__4); i__ <= i__5; ++i__) { + s += (r__1 = ab[*kd + 1 + i__ - k + k * ab_dim1], + dabs(r__1)) * (r__2 = x[i__ + j * x_dim1], + dabs(r__2)); +/* L130: */ + } + work[k] += s; +/* L140: */ + } + } + } else { + if (nounit) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + s = 0.f; +/* Computing MIN */ + i__3 = *n, i__4 = k + *kd; + i__5 = min(i__3,i__4); + for (i__ = k; i__ <= i__5; ++i__) { + s += (r__1 = ab[i__ + 1 - k + k * ab_dim1], dabs( + r__1)) * (r__2 = x[i__ + j * x_dim1], + dabs(r__2)); +/* L150: */ + } + work[k] += s; +/* L160: */ + } + } else { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + s = (r__1 = x[k + j * x_dim1], dabs(r__1)); +/* Computing MIN */ + i__3 = *n, i__4 = k + *kd; + i__5 = min(i__3,i__4); + for (i__ = k + 1; i__ <= i__5; ++i__) { + s += (r__1 = ab[i__ + 1 - k + k * ab_dim1], dabs( + r__1)) * (r__2 = x[i__ + j * x_dim1], + dabs(r__2)); +/* L170: */ + } + work[k] += s; +/* L180: */ + } + } + } + } + s = 0.f; + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + if (work[i__] > safe2) { +/* Computing MAX */ + r__2 = s, r__3 = (r__1 = work[*n + i__], dabs(r__1)) / work[ + i__]; + s = dmax(r__2,r__3); + } else { +/* Computing MAX */ + r__2 = s, r__3 = ((r__1 = work[*n + i__], dabs(r__1)) + safe1) + / (work[i__] + safe1); + s = dmax(r__2,r__3); + } +/* L190: */ + } + berr[j] = s; + +/* Bound error from formula */ + +/* norm(X - XTRUE) / norm(X) .le. FERR = */ +/* norm( abs(inv(op(A)))* */ +/* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */ + +/* where */ +/* norm(Z) is the magnitude of the largest component of Z */ +/* inv(op(A)) is the inverse of op(A) */ +/* abs(Z) is the componentwise absolute value of the matrix or */ +/* vector Z */ +/* NZ is the maximum number of nonzeros in any row of A, plus 1 */ +/* EPS is machine epsilon */ + +/* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */ +/* is incremented by SAFE1 if the i-th component of */ +/* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */ + +/* Use SLACN2 to estimate the infinity-norm of the matrix */ +/* inv(op(A)) * diag(W), */ +/* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */ + + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + if (work[i__] > safe2) { + work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * + work[i__]; + } else { + work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * + work[i__] + safe1; + } +/* L200: */ + } + + kase = 0; +L210: + slacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & + kase, isave); + if (kase != 0) { + if (kase == 1) { + +/* Multiply by diag(W)*inv(op(A)'). */ + + stbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[ + *n + 1], &c__1); + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + work[*n + i__] = work[i__] * work[*n + i__]; +/* L220: */ + } + } else { + +/* Multiply by inv(op(A))*diag(W). */ + + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + work[*n + i__] = work[i__] * work[*n + i__]; +/* L230: */ + } + stbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[* + n + 1], &c__1); + } + goto L210; + } + +/* Normalize error. */ + + lstres = 0.f; + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + r__2 = lstres, r__3 = (r__1 = x[i__ + j * x_dim1], dabs(r__1)); + lstres = dmax(r__2,r__3); +/* L240: */ + } + if (lstres != 0.f) { + ferr[j] /= lstres; + } + +/* L250: */ + } + + return 0; + +/* End of STBRFS */ + +} /* stbrfs_ */ |