diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ssytri.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ssytri.c')
-rw-r--r-- | contrib/libs/clapack/ssytri.c | 394 |
1 files changed, 394 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ssytri.c b/contrib/libs/clapack/ssytri.c new file mode 100644 index 0000000000..24700baeec --- /dev/null +++ b/contrib/libs/clapack/ssytri.c @@ -0,0 +1,394 @@ +/* ssytri.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static real c_b11 = -1.f; +static real c_b13 = 0.f; + +/* Subroutine */ int ssytri_(char *uplo, integer *n, real *a, integer *lda, + integer *ipiv, real *work, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1; + real r__1; + + /* Local variables */ + real d__; + integer k; + real t, ak; + integer kp; + real akp1, temp; + extern doublereal sdot_(integer *, real *, integer *, real *, integer *); + real akkp1; + extern logical lsame_(char *, char *); + integer kstep; + logical upper; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *), sswap_(integer *, real *, integer *, real *, integer * +), ssymv_(char *, integer *, real *, real *, integer *, real *, + integer *, real *, real *, integer *), xerbla_(char *, + integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SSYTRI computes the inverse of a real symmetric indefinite matrix */ +/* A using the factorization A = U*D*U**T or A = L*D*L**T computed by */ +/* SSYTRF. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the details of the factorization are stored */ +/* as an upper or lower triangular matrix. */ +/* = 'U': Upper triangular, form is A = U*D*U**T; */ +/* = 'L': Lower triangular, form is A = L*D*L**T. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) REAL array, dimension (LDA,N) */ +/* On entry, the block diagonal matrix D and the multipliers */ +/* used to obtain the factor U or L as computed by SSYTRF. */ + +/* On exit, if INFO = 0, the (symmetric) inverse of the original */ +/* matrix. If UPLO = 'U', the upper triangular part of the */ +/* inverse is formed and the part of A below the diagonal is not */ +/* referenced; if UPLO = 'L' the lower triangular part of the */ +/* inverse is formed and the part of A above the diagonal is */ +/* not referenced. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* IPIV (input) INTEGER array, dimension (N) */ +/* Details of the interchanges and the block structure of D */ +/* as determined by SSYTRF. */ + +/* WORK (workspace) REAL array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */ +/* inverse could not be computed. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + --work; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("SSYTRI", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Check that the diagonal matrix D is nonsingular. */ + + if (upper) { + +/* Upper triangular storage: examine D from bottom to top */ + + for (*info = *n; *info >= 1; --(*info)) { + if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.f) { + return 0; + } +/* L10: */ + } + } else { + +/* Lower triangular storage: examine D from top to bottom. */ + + i__1 = *n; + for (*info = 1; *info <= i__1; ++(*info)) { + if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.f) { + return 0; + } +/* L20: */ + } + } + *info = 0; + + if (upper) { + +/* Compute inv(A) from the factorization A = U*D*U'. */ + +/* K is the main loop index, increasing from 1 to N in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + k = 1; +L30: + +/* If K > N, exit from loop. */ + + if (k > *n) { + goto L40; + } + + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Invert the diagonal block. */ + + a[k + k * a_dim1] = 1.f / a[k + k * a_dim1]; + +/* Compute column K of the inverse. */ + + if (k > 1) { + i__1 = k - 1; + scopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1); + i__1 = k - 1; + ssymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], & + c__1, &c_b13, &a[k * a_dim1 + 1], &c__1); + i__1 = k - 1; + a[k + k * a_dim1] -= sdot_(&i__1, &work[1], &c__1, &a[k * + a_dim1 + 1], &c__1); + } + kstep = 1; + } else { + +/* 2 x 2 diagonal block */ + +/* Invert the diagonal block. */ + + t = (r__1 = a[k + (k + 1) * a_dim1], dabs(r__1)); + ak = a[k + k * a_dim1] / t; + akp1 = a[k + 1 + (k + 1) * a_dim1] / t; + akkp1 = a[k + (k + 1) * a_dim1] / t; + d__ = t * (ak * akp1 - 1.f); + a[k + k * a_dim1] = akp1 / d__; + a[k + 1 + (k + 1) * a_dim1] = ak / d__; + a[k + (k + 1) * a_dim1] = -akkp1 / d__; + +/* Compute columns K and K+1 of the inverse. */ + + if (k > 1) { + i__1 = k - 1; + scopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1); + i__1 = k - 1; + ssymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], & + c__1, &c_b13, &a[k * a_dim1 + 1], &c__1); + i__1 = k - 1; + a[k + k * a_dim1] -= sdot_(&i__1, &work[1], &c__1, &a[k * + a_dim1 + 1], &c__1); + i__1 = k - 1; + a[k + (k + 1) * a_dim1] -= sdot_(&i__1, &a[k * a_dim1 + 1], & + c__1, &a[(k + 1) * a_dim1 + 1], &c__1); + i__1 = k - 1; + scopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], & + c__1); + i__1 = k - 1; + ssymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], & + c__1, &c_b13, &a[(k + 1) * a_dim1 + 1], &c__1); + i__1 = k - 1; + a[k + 1 + (k + 1) * a_dim1] -= sdot_(&i__1, &work[1], &c__1, & + a[(k + 1) * a_dim1 + 1], &c__1); + } + kstep = 2; + } + + kp = (i__1 = ipiv[k], abs(i__1)); + if (kp != k) { + +/* Interchange rows and columns K and KP in the leading */ +/* submatrix A(1:k+1,1:k+1) */ + + i__1 = kp - 1; + sswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], & + c__1); + i__1 = k - kp - 1; + sswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1) * + a_dim1], lda); + temp = a[k + k * a_dim1]; + a[k + k * a_dim1] = a[kp + kp * a_dim1]; + a[kp + kp * a_dim1] = temp; + if (kstep == 2) { + temp = a[k + (k + 1) * a_dim1]; + a[k + (k + 1) * a_dim1] = a[kp + (k + 1) * a_dim1]; + a[kp + (k + 1) * a_dim1] = temp; + } + } + + k += kstep; + goto L30; +L40: + + ; + } else { + +/* Compute inv(A) from the factorization A = L*D*L'. */ + +/* K is the main loop index, increasing from 1 to N in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + k = *n; +L50: + +/* If K < 1, exit from loop. */ + + if (k < 1) { + goto L60; + } + + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Invert the diagonal block. */ + + a[k + k * a_dim1] = 1.f / a[k + k * a_dim1]; + +/* Compute column K of the inverse. */ + + if (k < *n) { + i__1 = *n - k; + scopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1); + i__1 = *n - k; + ssymv_(uplo, &i__1, &c_b11, &a[k + 1 + (k + 1) * a_dim1], lda, + &work[1], &c__1, &c_b13, &a[k + 1 + k * a_dim1], & + c__1); + i__1 = *n - k; + a[k + k * a_dim1] -= sdot_(&i__1, &work[1], &c__1, &a[k + 1 + + k * a_dim1], &c__1); + } + kstep = 1; + } else { + +/* 2 x 2 diagonal block */ + +/* Invert the diagonal block. */ + + t = (r__1 = a[k + (k - 1) * a_dim1], dabs(r__1)); + ak = a[k - 1 + (k - 1) * a_dim1] / t; + akp1 = a[k + k * a_dim1] / t; + akkp1 = a[k + (k - 1) * a_dim1] / t; + d__ = t * (ak * akp1 - 1.f); + a[k - 1 + (k - 1) * a_dim1] = akp1 / d__; + a[k + k * a_dim1] = ak / d__; + a[k + (k - 1) * a_dim1] = -akkp1 / d__; + +/* Compute columns K-1 and K of the inverse. */ + + if (k < *n) { + i__1 = *n - k; + scopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1); + i__1 = *n - k; + ssymv_(uplo, &i__1, &c_b11, &a[k + 1 + (k + 1) * a_dim1], lda, + &work[1], &c__1, &c_b13, &a[k + 1 + k * a_dim1], & + c__1); + i__1 = *n - k; + a[k + k * a_dim1] -= sdot_(&i__1, &work[1], &c__1, &a[k + 1 + + k * a_dim1], &c__1); + i__1 = *n - k; + a[k + (k - 1) * a_dim1] -= sdot_(&i__1, &a[k + 1 + k * a_dim1] +, &c__1, &a[k + 1 + (k - 1) * a_dim1], &c__1); + i__1 = *n - k; + scopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], & + c__1); + i__1 = *n - k; + ssymv_(uplo, &i__1, &c_b11, &a[k + 1 + (k + 1) * a_dim1], lda, + &work[1], &c__1, &c_b13, &a[k + 1 + (k - 1) * a_dim1] +, &c__1); + i__1 = *n - k; + a[k - 1 + (k - 1) * a_dim1] -= sdot_(&i__1, &work[1], &c__1, & + a[k + 1 + (k - 1) * a_dim1], &c__1); + } + kstep = 2; + } + + kp = (i__1 = ipiv[k], abs(i__1)); + if (kp != k) { + +/* Interchange rows and columns K and KP in the trailing */ +/* submatrix A(k-1:n,k-1:n) */ + + if (kp < *n) { + i__1 = *n - kp; + sswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 + kp * + a_dim1], &c__1); + } + i__1 = kp - k - 1; + sswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) * + a_dim1], lda); + temp = a[k + k * a_dim1]; + a[k + k * a_dim1] = a[kp + kp * a_dim1]; + a[kp + kp * a_dim1] = temp; + if (kstep == 2) { + temp = a[k + (k - 1) * a_dim1]; + a[k + (k - 1) * a_dim1] = a[kp + (k - 1) * a_dim1]; + a[kp + (k - 1) * a_dim1] = temp; + } + } + + k -= kstep; + goto L50; +L60: + ; + } + + return 0; + +/* End of SSYTRI */ + +} /* ssytri_ */ |