aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ssyevr.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ssyevr.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ssyevr.c')
-rw-r--r--contrib/libs/clapack/ssyevr.c658
1 files changed, 658 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ssyevr.c b/contrib/libs/clapack/ssyevr.c
new file mode 100644
index 0000000000..af26cb0bb5
--- /dev/null
+++ b/contrib/libs/clapack/ssyevr.c
@@ -0,0 +1,658 @@
+/* ssyevr.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__10 = 10;
+static integer c__1 = 1;
+static integer c__2 = 2;
+static integer c__3 = 3;
+static integer c__4 = 4;
+static integer c_n1 = -1;
+
+/* Subroutine */ int ssyevr_(char *jobz, char *range, char *uplo, integer *n,
+ real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu,
+ real *abstol, integer *m, real *w, real *z__, integer *ldz, integer *
+ isuppz, real *work, integer *lwork, integer *iwork, integer *liwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
+ real r__1, r__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, nb, jj;
+ real eps, vll, vuu, tmp1;
+ integer indd, inde;
+ real anrm;
+ integer imax;
+ real rmin, rmax;
+ logical test;
+ integer inddd, indee;
+ real sigma;
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ char order[1];
+ integer indwk, lwmin;
+ logical lower;
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *), sswap_(integer *, real *, integer *, real *, integer *
+);
+ logical wantz, alleig, indeig;
+ integer iscale, ieeeok, indibl, indifl;
+ logical valeig;
+ extern doublereal slamch_(char *);
+ real safmin;
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real abstll, bignum;
+ integer indtau, indisp, indiwo, indwkn, liwmin;
+ logical tryrac;
+ extern /* Subroutine */ int sstein_(integer *, real *, real *, integer *,
+ real *, integer *, integer *, real *, integer *, real *, integer *
+, integer *, integer *), ssterf_(integer *, real *, real *,
+ integer *);
+ integer llwrkn, llwork, nsplit;
+ real smlnum;
+ extern doublereal slansy_(char *, char *, integer *, real *, integer *,
+ real *);
+ extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *,
+ real *, integer *, integer *, real *, real *, real *, integer *,
+ integer *, real *, integer *, integer *, real *, integer *,
+ integer *), sstemr_(char *, char *, integer *,
+ real *, real *, real *, real *, integer *, integer *, integer *,
+ real *, real *, integer *, integer *, integer *, logical *, real *
+, integer *, integer *, integer *, integer *);
+ integer lwkopt;
+ logical lquery;
+ extern /* Subroutine */ int sormtr_(char *, char *, char *, integer *,
+ integer *, real *, integer *, real *, real *, integer *, real *,
+ integer *, integer *), ssytrd_(char *,
+ integer *, real *, integer *, real *, real *, real *, real *,
+ integer *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SSYEVR computes selected eigenvalues and, optionally, eigenvectors */
+/* of a real symmetric matrix A. Eigenvalues and eigenvectors can be */
+/* selected by specifying either a range of values or a range of */
+/* indices for the desired eigenvalues. */
+
+/* SSYEVR first reduces the matrix A to tridiagonal form T with a call */
+/* to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute */
+/* the eigenspectrum using Relatively Robust Representations. SSTEMR */
+/* computes eigenvalues by the dqds algorithm, while orthogonal */
+/* eigenvectors are computed from various "good" L D L^T representations */
+/* (also known as Relatively Robust Representations). Gram-Schmidt */
+/* orthogonalization is avoided as far as possible. More specifically, */
+/* the various steps of the algorithm are as follows. */
+
+/* For each unreduced block (submatrix) of T, */
+/* (a) Compute T - sigma I = L D L^T, so that L and D */
+/* define all the wanted eigenvalues to high relative accuracy. */
+/* This means that small relative changes in the entries of D and L */
+/* cause only small relative changes in the eigenvalues and */
+/* eigenvectors. The standard (unfactored) representation of the */
+/* tridiagonal matrix T does not have this property in general. */
+/* (b) Compute the eigenvalues to suitable accuracy. */
+/* If the eigenvectors are desired, the algorithm attains full */
+/* accuracy of the computed eigenvalues only right before */
+/* the corresponding vectors have to be computed, see steps c) and d). */
+/* (c) For each cluster of close eigenvalues, select a new */
+/* shift close to the cluster, find a new factorization, and refine */
+/* the shifted eigenvalues to suitable accuracy. */
+/* (d) For each eigenvalue with a large enough relative separation compute */
+/* the corresponding eigenvector by forming a rank revealing twisted */
+/* factorization. Go back to (c) for any clusters that remain. */
+
+/* The desired accuracy of the output can be specified by the input */
+/* parameter ABSTOL. */
+
+/* For more details, see SSTEMR's documentation and: */
+/* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
+/* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
+/* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
+/* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
+/* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
+/* 2004. Also LAPACK Working Note 154. */
+/* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
+/* tridiagonal eigenvalue/eigenvector problem", */
+/* Computer Science Division Technical Report No. UCB/CSD-97-971, */
+/* UC Berkeley, May 1997. */
+
+
+/* Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested */
+/* on machines which conform to the ieee-754 floating point standard. */
+/* SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and */
+/* when partial spectrum requests are made. */
+
+/* Normal execution of SSTEMR may create NaNs and infinities and */
+/* hence may abort due to a floating point exception in environments */
+/* which do not handle NaNs and infinities in the ieee standard default */
+/* manner. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* RANGE (input) CHARACTER*1 */
+/* = 'A': all eigenvalues will be found. */
+/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
+/* will be found. */
+/* = 'I': the IL-th through IU-th eigenvalues will be found. */
+/* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
+/* ********* SSTEIN are called */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) REAL array, dimension (LDA, N) */
+/* On entry, the symmetric matrix A. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of A contains the */
+/* upper triangular part of the matrix A. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of A contains */
+/* the lower triangular part of the matrix A. */
+/* On exit, the lower triangle (if UPLO='L') or the upper */
+/* triangle (if UPLO='U') of A, including the diagonal, is */
+/* destroyed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* VL (input) REAL */
+/* VU (input) REAL */
+/* If RANGE='V', the lower and upper bounds of the interval to */
+/* be searched for eigenvalues. VL < VU. */
+/* Not referenced if RANGE = 'A' or 'I'. */
+
+/* IL (input) INTEGER */
+/* IU (input) INTEGER */
+/* If RANGE='I', the indices (in ascending order) of the */
+/* smallest and largest eigenvalues to be returned. */
+/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
+/* Not referenced if RANGE = 'A' or 'V'. */
+
+/* ABSTOL (input) REAL */
+/* The absolute error tolerance for the eigenvalues. */
+/* An approximate eigenvalue is accepted as converged */
+/* when it is determined to lie in an interval [a,b] */
+/* of width less than or equal to */
+
+/* ABSTOL + EPS * max( |a|,|b| ) , */
+
+/* where EPS is the machine precision. If ABSTOL is less than */
+/* or equal to zero, then EPS*|T| will be used in its place, */
+/* where |T| is the 1-norm of the tridiagonal matrix obtained */
+/* by reducing A to tridiagonal form. */
+
+/* See "Computing Small Singular Values of Bidiagonal Matrices */
+/* with Guaranteed High Relative Accuracy," by Demmel and */
+/* Kahan, LAPACK Working Note #3. */
+
+/* If high relative accuracy is important, set ABSTOL to */
+/* SLAMCH( 'Safe minimum' ). Doing so will guarantee that */
+/* eigenvalues are computed to high relative accuracy when */
+/* possible in future releases. The current code does not */
+/* make any guarantees about high relative accuracy, but */
+/* future releases will. See J. Barlow and J. Demmel, */
+/* "Computing Accurate Eigensystems of Scaled Diagonally */
+/* Dominant Matrices", LAPACK Working Note #7, for a discussion */
+/* of which matrices define their eigenvalues to high relative */
+/* accuracy. */
+
+/* M (output) INTEGER */
+/* The total number of eigenvalues found. 0 <= M <= N. */
+/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
+
+/* W (output) REAL array, dimension (N) */
+/* The first M elements contain the selected eigenvalues in */
+/* ascending order. */
+
+/* Z (output) REAL array, dimension (LDZ, max(1,M)) */
+/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
+/* contain the orthonormal eigenvectors of the matrix A */
+/* corresponding to the selected eigenvalues, with the i-th */
+/* column of Z holding the eigenvector associated with W(i). */
+/* If JOBZ = 'N', then Z is not referenced. */
+/* Note: the user must ensure that at least max(1,M) columns are */
+/* supplied in the array Z; if RANGE = 'V', the exact value of M */
+/* is not known in advance and an upper bound must be used. */
+/* Supplying N columns is always safe. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */
+/* The support of the eigenvectors in Z, i.e., the indices */
+/* indicating the nonzero elements in Z. The i-th eigenvector */
+/* is nonzero only in elements ISUPPZ( 2*i-1 ) through */
+/* ISUPPZ( 2*i ). */
+/* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,26*N). */
+/* For optimal efficiency, LWORK >= (NB+6)*N, */
+/* where NB is the max of the blocksize for SSYTRD and SORMTR */
+/* returned by ILAENV. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal sizes of the WORK and IWORK */
+/* arrays, returns these values as the first entries of the WORK */
+/* and IWORK arrays, and no error message related to LWORK or */
+/* LIWORK is issued by XERBLA. */
+
+/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of the array IWORK. LIWORK >= max(1,10*N). */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the optimal sizes of the WORK and */
+/* IWORK arrays, returns these values as the first entries of */
+/* the WORK and IWORK arrays, and no error message related to */
+/* LWORK or LIWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: Internal error */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Inderjit Dhillon, IBM Almaden, USA */
+/* Osni Marques, LBNL/NERSC, USA */
+/* Ken Stanley, Computer Science Division, University of */
+/* California at Berkeley, USA */
+/* Jason Riedy, Computer Science Division, University of */
+/* California at Berkeley, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --isuppz;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ ieeeok = ilaenv_(&c__10, "SSYEVR", "N", &c__1, &c__2, &c__3, &c__4);
+
+ lower = lsame_(uplo, "L");
+ wantz = lsame_(jobz, "V");
+ alleig = lsame_(range, "A");
+ valeig = lsame_(range, "V");
+ indeig = lsame_(range, "I");
+
+ lquery = *lwork == -1 || *liwork == -1;
+
+/* Computing MAX */
+ i__1 = 1, i__2 = *n * 26;
+ lwmin = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = 1, i__2 = *n * 10;
+ liwmin = max(i__1,i__2);
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (alleig || valeig || indeig)) {
+ *info = -2;
+ } else if (! (lower || lsame_(uplo, "U"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else {
+ if (valeig) {
+ if (*n > 0 && *vu <= *vl) {
+ *info = -8;
+ }
+ } else if (indeig) {
+ if (*il < 1 || *il > max(1,*n)) {
+ *info = -9;
+ } else if (*iu < min(*n,*il) || *iu > *n) {
+ *info = -10;
+ }
+ }
+ }
+ if (*info == 0) {
+ if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -15;
+ }
+ }
+
+ if (*info == 0) {
+ nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1, &
+ c_n1);
+ nb = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = (nb + 1) * *n;
+ lwkopt = max(i__1,lwmin);
+ work[1] = (real) lwkopt;
+ iwork[1] = liwmin;
+
+ if (*lwork < lwmin && ! lquery) {
+ *info = -18;
+ } else if (*liwork < liwmin && ! lquery) {
+ *info = -20;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SSYEVR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *m = 0;
+ if (*n == 0) {
+ work[1] = 1.f;
+ return 0;
+ }
+
+ if (*n == 1) {
+ work[1] = 26.f;
+ if (alleig || indeig) {
+ *m = 1;
+ w[1] = a[a_dim1 + 1];
+ } else {
+ if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
+ *m = 1;
+ w[1] = a[a_dim1 + 1];
+ }
+ }
+ if (wantz) {
+ z__[z_dim1 + 1] = 1.f;
+ }
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ safmin = slamch_("Safe minimum");
+ eps = slamch_("Precision");
+ smlnum = safmin / eps;
+ bignum = 1.f / smlnum;
+ rmin = sqrt(smlnum);
+/* Computing MIN */
+ r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
+ rmax = dmin(r__1,r__2);
+
+/* Scale matrix to allowable range, if necessary. */
+
+ iscale = 0;
+ abstll = *abstol;
+ if (valeig) {
+ vll = *vl;
+ vuu = *vu;
+ }
+ anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
+ if (anrm > 0.f && anrm < rmin) {
+ iscale = 1;
+ sigma = rmin / anrm;
+ } else if (anrm > rmax) {
+ iscale = 1;
+ sigma = rmax / anrm;
+ }
+ if (iscale == 1) {
+ if (lower) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n - j + 1;
+ sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
+/* L20: */
+ }
+ }
+ if (*abstol > 0.f) {
+ abstll = *abstol * sigma;
+ }
+ if (valeig) {
+ vll = *vl * sigma;
+ vuu = *vu * sigma;
+ }
+ }
+/* Initialize indices into workspaces. Note: The IWORK indices are */
+/* used only if SSTERF or SSTEMR fail. */
+/* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
+/* elementary reflectors used in SSYTRD. */
+ indtau = 1;
+/* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
+ indd = indtau + *n;
+/* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
+/* tridiagonal matrix from SSYTRD. */
+ inde = indd + *n;
+/* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
+/* -written by SSTEMR (the SSTERF path copies the diagonal to W). */
+ inddd = inde + *n;
+/* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
+/* -written while computing the eigenvalues in SSTERF and SSTEMR. */
+ indee = inddd + *n;
+/* INDWK is the starting offset of the left-over workspace, and */
+/* LLWORK is the remaining workspace size. */
+ indwk = indee + *n;
+ llwork = *lwork - indwk + 1;
+/* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
+/* stores the block indices of each of the M<=N eigenvalues. */
+ indibl = 1;
+/* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
+/* stores the starting and finishing indices of each block. */
+ indisp = indibl + *n;
+/* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
+/* that corresponding to eigenvectors that fail to converge in */
+/* SSTEIN. This information is discarded; if any fail, the driver */
+/* returns INFO > 0. */
+ indifl = indisp + *n;
+/* INDIWO is the offset of the remaining integer workspace. */
+ indiwo = indisp + *n;
+
+/* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
+
+ ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
+ indtau], &work[indwk], &llwork, &iinfo);
+
+/* If all eigenvalues are desired */
+/* then call SSTERF or SSTEMR and SORMTR. */
+
+ test = FALSE_;
+ if (indeig) {
+ if (*il == 1 && *iu == *n) {
+ test = TRUE_;
+ }
+ }
+ if ((alleig || test) && ieeeok == 1) {
+ if (! wantz) {
+ scopy_(n, &work[indd], &c__1, &w[1], &c__1);
+ i__1 = *n - 1;
+ scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
+ ssterf_(n, &w[1], &work[indee], info);
+ } else {
+ i__1 = *n - 1;
+ scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
+ scopy_(n, &work[indd], &c__1, &work[inddd], &c__1);
+
+ if (*abstol <= *n * 2.f * eps) {
+ tryrac = TRUE_;
+ } else {
+ tryrac = FALSE_;
+ }
+ sstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu,
+ m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
+ work[indwk], lwork, &iwork[1], liwork, info);
+
+
+
+/* Apply orthogonal matrix used in reduction to tridiagonal */
+/* form to eigenvectors returned by SSTEIN. */
+
+ if (wantz && *info == 0) {
+ indwkn = inde;
+ llwrkn = *lwork - indwkn + 1;
+ sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
+, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
+ }
+ }
+
+
+ if (*info == 0) {
+/* Everything worked. Skip SSTEBZ/SSTEIN. IWORK(:) are */
+/* undefined. */
+ *m = *n;
+ goto L30;
+ }
+ *info = 0;
+ }
+
+/* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */
+/* Also call SSTEBZ and SSTEIN if SSTEMR fails. */
+
+ if (wantz) {
+ *(unsigned char *)order = 'B';
+ } else {
+ *(unsigned char *)order = 'E';
+ }
+ sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
+ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
+ indwk], &iwork[indiwo], info);
+
+ if (wantz) {
+ sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
+ indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
+ iwork[indifl], info);
+
+/* Apply orthogonal matrix used in reduction to tridiagonal */
+/* form to eigenvectors returned by SSTEIN. */
+
+ indwkn = inde;
+ llwrkn = *lwork - indwkn + 1;
+ sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
+ z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
+ }
+
+/* If matrix was scaled, then rescale eigenvalues appropriately. */
+
+/* Jump here if SSTEMR/SSTEIN succeeded. */
+L30:
+ if (iscale == 1) {
+ if (*info == 0) {
+ imax = *m;
+ } else {
+ imax = *info - 1;
+ }
+ r__1 = 1.f / sigma;
+ sscal_(&imax, &r__1, &w[1], &c__1);
+ }
+
+/* If eigenvalues are not in order, then sort them, along with */
+/* eigenvectors. Note: We do not sort the IFAIL portion of IWORK. */
+/* It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do */
+/* not return this detailed information to the user. */
+
+ if (wantz) {
+ i__1 = *m - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__ = 0;
+ tmp1 = w[j];
+ i__2 = *m;
+ for (jj = j + 1; jj <= i__2; ++jj) {
+ if (w[jj] < tmp1) {
+ i__ = jj;
+ tmp1 = w[jj];
+ }
+/* L40: */
+ }
+
+ if (i__ != 0) {
+ w[i__] = w[j];
+ w[j] = tmp1;
+ sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
+ &c__1);
+ }
+/* L50: */
+ }
+ }
+
+/* Set WORK(1) to optimal workspace size. */
+
+ work[1] = (real) lwkopt;
+ iwork[1] = liwmin;
+
+ return 0;
+
+/* End of SSYEVR */
+
+} /* ssyevr_ */