diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ssyevd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ssyevd.c')
-rw-r--r-- | contrib/libs/clapack/ssyevd.c | 344 |
1 files changed, 344 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ssyevd.c b/contrib/libs/clapack/ssyevd.c new file mode 100644 index 0000000000..430de7dec0 --- /dev/null +++ b/contrib/libs/clapack/ssyevd.c @@ -0,0 +1,344 @@ +/* ssyevd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__0 = 0; +static real c_b17 = 1.f; + +/* Subroutine */ int ssyevd_(char *jobz, char *uplo, integer *n, real *a, + integer *lda, real *w, real *work, integer *lwork, integer *iwork, + integer *liwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + real r__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + real eps; + integer inde; + real anrm, rmin, rmax; + integer lopt; + real sigma; + extern logical lsame_(char *, char *); + integer iinfo; + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + integer lwmin, liopt; + logical lower, wantz; + integer indwk2, llwrk2, iscale; + extern doublereal slamch_(char *); + real safmin; + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + real bignum; + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *); + integer indtau; + extern /* Subroutine */ int sstedc_(char *, integer *, real *, real *, + real *, integer *, real *, integer *, integer *, integer *, + integer *), slacpy_(char *, integer *, integer *, real *, + integer *, real *, integer *); + integer indwrk, liwmin; + extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); + extern doublereal slansy_(char *, char *, integer *, real *, integer *, + real *); + integer llwork; + real smlnum; + logical lquery; + extern /* Subroutine */ int sormtr_(char *, char *, char *, integer *, + integer *, real *, integer *, real *, real *, integer *, real *, + integer *, integer *), ssytrd_(char *, + integer *, real *, integer *, real *, real *, real *, real *, + integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SSYEVD computes all eigenvalues and, optionally, eigenvectors of a */ +/* real symmetric matrix A. If eigenvectors are desired, it uses a */ +/* divide and conquer algorithm. */ + +/* The divide and conquer algorithm makes very mild assumptions about */ +/* floating point arithmetic. It will work on machines with a guard */ +/* digit in add/subtract, or on those binary machines without guard */ +/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ +/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ +/* without guard digits, but we know of none. */ + +/* Because of large use of BLAS of level 3, SSYEVD needs N**2 more */ +/* workspace than SSYEVX. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) REAL array, dimension (LDA, N) */ +/* On entry, the symmetric matrix A. If UPLO = 'U', the */ +/* leading N-by-N upper triangular part of A contains the */ +/* upper triangular part of the matrix A. If UPLO = 'L', */ +/* the leading N-by-N lower triangular part of A contains */ +/* the lower triangular part of the matrix A. */ +/* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ +/* orthonormal eigenvectors of the matrix A. */ +/* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */ +/* or the upper triangle (if UPLO='U') of A, including the */ +/* diagonal, is destroyed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* W (output) REAL array, dimension (N) */ +/* If INFO = 0, the eigenvalues in ascending order. */ + +/* WORK (workspace/output) REAL array, */ +/* dimension (LWORK) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. */ +/* If N <= 1, LWORK must be at least 1. */ +/* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1. */ +/* If JOBZ = 'V' and N > 1, LWORK must be at least */ +/* 1 + 6*N + 2*N**2. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal sizes of the WORK and IWORK */ +/* arrays, returns these values as the first entries of the WORK */ +/* and IWORK arrays, and no error message related to LWORK or */ +/* LIWORK is issued by XERBLA. */ + +/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ +/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ + +/* LIWORK (input) INTEGER */ +/* The dimension of the array IWORK. */ +/* If N <= 1, LIWORK must be at least 1. */ +/* If JOBZ = 'N' and N > 1, LIWORK must be at least 1. */ +/* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */ + +/* If LIWORK = -1, then a workspace query is assumed; the */ +/* routine only calculates the optimal sizes of the WORK and */ +/* IWORK arrays, returns these values as the first entries of */ +/* the WORK and IWORK arrays, and no error message related to */ +/* LWORK or LIWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i and JOBZ = 'N', then the algorithm failed */ +/* to converge; i off-diagonal elements of an intermediate */ +/* tridiagonal form did not converge to zero; */ +/* if INFO = i and JOBZ = 'V', then the algorithm failed */ +/* to compute an eigenvalue while working on the submatrix */ +/* lying in rows and columns INFO/(N+1) through */ +/* mod(INFO,N+1). */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Jeff Rutter, Computer Science Division, University of California */ +/* at Berkeley, USA */ +/* Modified by Francoise Tisseur, University of Tennessee. */ + +/* Modified description of INFO. Sven, 16 Feb 05. */ +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ + +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --w; + --work; + --iwork; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + lower = lsame_(uplo, "L"); + lquery = *lwork == -1 || *liwork == -1; + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (lower || lsame_(uplo, "U"))) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } + + if (*info == 0) { + if (*n <= 1) { + liwmin = 1; + lwmin = 1; + lopt = lwmin; + liopt = liwmin; + } else { + if (wantz) { + liwmin = *n * 5 + 3; +/* Computing 2nd power */ + i__1 = *n; + lwmin = *n * 6 + 1 + (i__1 * i__1 << 1); + } else { + liwmin = 1; + lwmin = (*n << 1) + 1; + } +/* Computing MAX */ + i__1 = lwmin, i__2 = (*n << 1) + ilaenv_(&c__1, "SSYTRD", uplo, n, + &c_n1, &c_n1, &c_n1); + lopt = max(i__1,i__2); + liopt = liwmin; + } + work[1] = (real) lopt; + iwork[1] = liopt; + + if (*lwork < lwmin && ! lquery) { + *info = -8; + } else if (*liwork < liwmin && ! lquery) { + *info = -10; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("SSYEVD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (*n == 1) { + w[1] = a[a_dim1 + 1]; + if (wantz) { + a[a_dim1 + 1] = 1.f; + } + return 0; + } + +/* Get machine constants. */ + + safmin = slamch_("Safe minimum"); + eps = slamch_("Precision"); + smlnum = safmin / eps; + bignum = 1.f / smlnum; + rmin = sqrt(smlnum); + rmax = sqrt(bignum); + +/* Scale matrix to allowable range, if necessary. */ + + anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]); + iscale = 0; + if (anrm > 0.f && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + slascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda, + info); + } + +/* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ + + inde = 1; + indtau = inde + *n; + indwrk = indtau + *n; + llwork = *lwork - indwrk + 1; + indwk2 = indwrk + *n * *n; + llwrk2 = *lwork - indwk2 + 1; + + ssytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], & + work[indwrk], &llwork, &iinfo); + +/* For eigenvalues only, call SSTERF. For eigenvectors, first call */ +/* SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */ +/* tridiagonal matrix, then call SORMTR to multiply it by the */ +/* Householder transformations stored in A. */ + + if (! wantz) { + ssterf_(n, &w[1], &work[inde], info); + } else { + sstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], & + llwrk2, &iwork[1], liwork, info); + sormtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[ + indwrk], n, &work[indwk2], &llwrk2, &iinfo); + slacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + + if (iscale == 1) { + r__1 = 1.f / sigma; + sscal_(n, &r__1, &w[1], &c__1); + } + + work[1] = (real) lopt; + iwork[1] = liopt; + + return 0; + +/* End of SSYEVD */ + +} /* ssyevd_ */ |