aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sspgv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sspgv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sspgv.c')
-rw-r--r--contrib/libs/clapack/sspgv.c240
1 files changed, 240 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sspgv.c b/contrib/libs/clapack/sspgv.c
new file mode 100644
index 0000000000..1433001caf
--- /dev/null
+++ b/contrib/libs/clapack/sspgv.c
@@ -0,0 +1,240 @@
+/* sspgv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int sspgv_(integer *itype, char *jobz, char *uplo, integer *
+ n, real *ap, real *bp, real *w, real *z__, integer *ldz, real *work,
+ integer *info)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1;
+
+ /* Local variables */
+ integer j, neig;
+ extern logical lsame_(char *, char *);
+ char trans[1];
+ logical upper;
+ extern /* Subroutine */ int sspev_(char *, char *, integer *, real *,
+ real *, real *, integer *, real *, integer *);
+ logical wantz;
+ extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *,
+ real *, real *, integer *), stpsv_(char *,
+ char *, char *, integer *, real *, real *, integer *), xerbla_(char *, integer *), spptrf_(char
+ *, integer *, real *, integer *), sspgst_(integer *, char
+ *, integer *, real *, real *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SSPGV computes all the eigenvalues and, optionally, the eigenvectors */
+/* of a real generalized symmetric-definite eigenproblem, of the form */
+/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. */
+/* Here A and B are assumed to be symmetric, stored in packed format, */
+/* and B is also positive definite. */
+
+/* Arguments */
+/* ========= */
+
+/* ITYPE (input) INTEGER */
+/* Specifies the problem type to be solved: */
+/* = 1: A*x = (lambda)*B*x */
+/* = 2: A*B*x = (lambda)*x */
+/* = 3: B*A*x = (lambda)*x */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* AP (input/output) REAL array, dimension */
+/* (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* A, packed columnwise in a linear array. The j-th column of A */
+/* is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* On exit, the contents of AP are destroyed. */
+
+/* BP (input/output) REAL array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* B, packed columnwise in a linear array. The j-th column of B */
+/* is stored in the array BP as follows: */
+/* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
+
+/* On exit, the triangular factor U or L from the Cholesky */
+/* factorization B = U**T*U or B = L*L**T, in the same storage */
+/* format as B. */
+
+/* W (output) REAL array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* Z (output) REAL array, dimension (LDZ, N) */
+/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
+/* eigenvectors. The eigenvectors are normalized as follows: */
+/* if ITYPE = 1 or 2, Z**T*B*Z = I; */
+/* if ITYPE = 3, Z**T*inv(B)*Z = I. */
+/* If JOBZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace) REAL array, dimension (3*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: SPPTRF or SSPEV returned an error code: */
+/* <= N: if INFO = i, SSPEV failed to converge; */
+/* i off-diagonal elements of an intermediate */
+/* tridiagonal form did not converge to zero. */
+/* > N: if INFO = n + i, for 1 <= i <= n, then the leading */
+/* minor of order i of B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --ap;
+ --bp;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+
+ *info = 0;
+ if (*itype < 1 || *itype > 3) {
+ *info = -1;
+ } else if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -2;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SSPGV ", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a Cholesky factorization of B. */
+
+ spptrf_(uplo, n, &bp[1], info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem and solve. */
+
+ sspgst_(itype, uplo, n, &ap[1], &bp[1], info);
+ sspev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], info);
+
+ if (wantz) {
+
+/* Backtransform eigenvectors to the original problem. */
+
+ neig = *n;
+ if (*info > 0) {
+ neig = *info - 1;
+ }
+ if (*itype == 1 || *itype == 2) {
+
+/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
+/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'N';
+ } else {
+ *(unsigned char *)trans = 'T';
+ }
+
+ i__1 = neig;
+ for (j = 1; j <= i__1; ++j) {
+ stpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
+ 1], &c__1);
+/* L10: */
+ }
+
+ } else if (*itype == 3) {
+
+/* For B*A*x=(lambda)*x; */
+/* backtransform eigenvectors: x = L*y or U'*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'T';
+ } else {
+ *(unsigned char *)trans = 'N';
+ }
+
+ i__1 = neig;
+ for (j = 1; j <= i__1; ++j) {
+ stpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
+ 1], &c__1);
+/* L20: */
+ }
+ }
+ }
+ return 0;
+
+/* End of SSPGV */
+
+} /* sspgv_ */