diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sspgv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sspgv.c')
-rw-r--r-- | contrib/libs/clapack/sspgv.c | 240 |
1 files changed, 240 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sspgv.c b/contrib/libs/clapack/sspgv.c new file mode 100644 index 0000000000..1433001caf --- /dev/null +++ b/contrib/libs/clapack/sspgv.c @@ -0,0 +1,240 @@ +/* sspgv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int sspgv_(integer *itype, char *jobz, char *uplo, integer * + n, real *ap, real *bp, real *w, real *z__, integer *ldz, real *work, + integer *info) +{ + /* System generated locals */ + integer z_dim1, z_offset, i__1; + + /* Local variables */ + integer j, neig; + extern logical lsame_(char *, char *); + char trans[1]; + logical upper; + extern /* Subroutine */ int sspev_(char *, char *, integer *, real *, + real *, real *, integer *, real *, integer *); + logical wantz; + extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *, + real *, real *, integer *), stpsv_(char *, + char *, char *, integer *, real *, real *, integer *), xerbla_(char *, integer *), spptrf_(char + *, integer *, real *, integer *), sspgst_(integer *, char + *, integer *, real *, real *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SSPGV computes all the eigenvalues and, optionally, the eigenvectors */ +/* of a real generalized symmetric-definite eigenproblem, of the form */ +/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. */ +/* Here A and B are assumed to be symmetric, stored in packed format, */ +/* and B is also positive definite. */ + +/* Arguments */ +/* ========= */ + +/* ITYPE (input) INTEGER */ +/* Specifies the problem type to be solved: */ +/* = 1: A*x = (lambda)*B*x */ +/* = 2: A*B*x = (lambda)*x */ +/* = 3: B*A*x = (lambda)*x */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangles of A and B are stored; */ +/* = 'L': Lower triangles of A and B are stored. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* AP (input/output) REAL array, dimension */ +/* (N*(N+1)/2) */ +/* On entry, the upper or lower triangle of the symmetric matrix */ +/* A, packed columnwise in a linear array. The j-th column of A */ +/* is stored in the array AP as follows: */ +/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ +/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ + +/* On exit, the contents of AP are destroyed. */ + +/* BP (input/output) REAL array, dimension (N*(N+1)/2) */ +/* On entry, the upper or lower triangle of the symmetric matrix */ +/* B, packed columnwise in a linear array. The j-th column of B */ +/* is stored in the array BP as follows: */ +/* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */ +/* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */ + +/* On exit, the triangular factor U or L from the Cholesky */ +/* factorization B = U**T*U or B = L*L**T, in the same storage */ +/* format as B. */ + +/* W (output) REAL array, dimension (N) */ +/* If INFO = 0, the eigenvalues in ascending order. */ + +/* Z (output) REAL array, dimension (LDZ, N) */ +/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ +/* eigenvectors. The eigenvectors are normalized as follows: */ +/* if ITYPE = 1 or 2, Z**T*B*Z = I; */ +/* if ITYPE = 3, Z**T*inv(B)*Z = I. */ +/* If JOBZ = 'N', then Z is not referenced. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* WORK (workspace) REAL array, dimension (3*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: SPPTRF or SSPEV returned an error code: */ +/* <= N: if INFO = i, SSPEV failed to converge; */ +/* i off-diagonal elements of an intermediate */ +/* tridiagonal form did not converge to zero. */ +/* > N: if INFO = n + i, for 1 <= i <= n, then the leading */ +/* minor of order i of B is not positive definite. */ +/* The factorization of B could not be completed and */ +/* no eigenvalues or eigenvectors were computed. */ + +/* ===================================================================== */ + +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --ap; + --bp; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + upper = lsame_(uplo, "U"); + + *info = 0; + if (*itype < 1 || *itype > 3) { + *info = -1; + } else if (! (wantz || lsame_(jobz, "N"))) { + *info = -2; + } else if (! (upper || lsame_(uplo, "L"))) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*ldz < 1 || wantz && *ldz < *n) { + *info = -9; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("SSPGV ", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Form a Cholesky factorization of B. */ + + spptrf_(uplo, n, &bp[1], info); + if (*info != 0) { + *info = *n + *info; + return 0; + } + +/* Transform problem to standard eigenvalue problem and solve. */ + + sspgst_(itype, uplo, n, &ap[1], &bp[1], info); + sspev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], info); + + if (wantz) { + +/* Backtransform eigenvectors to the original problem. */ + + neig = *n; + if (*info > 0) { + neig = *info - 1; + } + if (*itype == 1 || *itype == 2) { + +/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ +/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ + + if (upper) { + *(unsigned char *)trans = 'N'; + } else { + *(unsigned char *)trans = 'T'; + } + + i__1 = neig; + for (j = 1; j <= i__1; ++j) { + stpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + + 1], &c__1); +/* L10: */ + } + + } else if (*itype == 3) { + +/* For B*A*x=(lambda)*x; */ +/* backtransform eigenvectors: x = L*y or U'*y */ + + if (upper) { + *(unsigned char *)trans = 'T'; + } else { + *(unsigned char *)trans = 'N'; + } + + i__1 = neig; + for (j = 1; j <= i__1; ++j) { + stpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + + 1], &c__1); +/* L20: */ + } + } + } + return 0; + +/* End of SSPGV */ + +} /* sspgv_ */ |