diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ssbgvx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ssbgvx.c')
-rw-r--r-- | contrib/libs/clapack/ssbgvx.c | 461 |
1 files changed, 461 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ssbgvx.c b/contrib/libs/clapack/ssbgvx.c new file mode 100644 index 0000000000..39873e5c5f --- /dev/null +++ b/contrib/libs/clapack/ssbgvx.c @@ -0,0 +1,461 @@ +/* ssbgvx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static real c_b25 = 1.f; +static real c_b27 = 0.f; + +/* Subroutine */ int ssbgvx_(char *jobz, char *range, char *uplo, integer *n, + integer *ka, integer *kb, real *ab, integer *ldab, real *bb, integer * + ldbb, real *q, integer *ldq, real *vl, real *vu, integer *il, integer + *iu, real *abstol, integer *m, real *w, real *z__, integer *ldz, real + *work, integer *iwork, integer *ifail, integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, + z_offset, i__1, i__2; + + /* Local variables */ + integer i__, j, jj; + real tmp1; + integer indd, inde; + char vect[1]; + logical test; + integer itmp1, indee; + extern logical lsame_(char *, char *); + integer iinfo; + char order[1]; + extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, + real *, integer *, real *, integer *, real *, real *, integer *); + logical upper; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *), sswap_(integer *, real *, integer *, real *, integer * +); + logical wantz, alleig, indeig; + integer indibl; + logical valeig; + extern /* Subroutine */ int xerbla_(char *, integer *); + integer indisp, indiwo; + extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, + integer *, real *, integer *); + integer indwrk; + extern /* Subroutine */ int spbstf_(char *, integer *, integer *, real *, + integer *, integer *), ssbtrd_(char *, char *, integer *, + integer *, real *, integer *, real *, real *, real *, integer *, + real *, integer *), ssbgst_(char *, char *, + integer *, integer *, integer *, real *, integer *, real *, + integer *, real *, integer *, real *, integer *), + sstein_(integer *, real *, real *, integer *, real *, integer *, + integer *, real *, integer *, real *, integer *, integer *, + integer *), ssterf_(integer *, real *, real *, integer *); + integer nsplit; + extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, + real *, integer *, integer *, real *, real *, real *, integer *, + integer *, real *, integer *, integer *, real *, integer *, + integer *), ssteqr_(char *, integer *, real *, + real *, real *, integer *, real *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SSBGVX computes selected eigenvalues, and optionally, eigenvectors */ +/* of a real generalized symmetric-definite banded eigenproblem, of */ +/* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */ +/* and banded, and B is also positive definite. Eigenvalues and */ +/* eigenvectors can be selected by specifying either all eigenvalues, */ +/* a range of values or a range of indices for the desired eigenvalues. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* RANGE (input) CHARACTER*1 */ +/* = 'A': all eigenvalues will be found. */ +/* = 'V': all eigenvalues in the half-open interval (VL,VU] */ +/* will be found. */ +/* = 'I': the IL-th through IU-th eigenvalues will be found. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangles of A and B are stored; */ +/* = 'L': Lower triangles of A and B are stored. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* KA (input) INTEGER */ +/* The number of superdiagonals of the matrix A if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ + +/* KB (input) INTEGER */ +/* The number of superdiagonals of the matrix B if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ + +/* AB (input/output) REAL array, dimension (LDAB, N) */ +/* On entry, the upper or lower triangle of the symmetric band */ +/* matrix A, stored in the first ka+1 rows of the array. The */ +/* j-th column of A is stored in the j-th column of the array AB */ +/* as follows: */ +/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ +/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ + +/* On exit, the contents of AB are destroyed. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KA+1. */ + +/* BB (input/output) REAL array, dimension (LDBB, N) */ +/* On entry, the upper or lower triangle of the symmetric band */ +/* matrix B, stored in the first kb+1 rows of the array. The */ +/* j-th column of B is stored in the j-th column of the array BB */ +/* as follows: */ +/* if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ +/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ + +/* On exit, the factor S from the split Cholesky factorization */ +/* B = S**T*S, as returned by SPBSTF. */ + +/* LDBB (input) INTEGER */ +/* The leading dimension of the array BB. LDBB >= KB+1. */ + +/* Q (output) REAL array, dimension (LDQ, N) */ +/* If JOBZ = 'V', the n-by-n matrix used in the reduction of */ +/* A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */ +/* and consequently C to tridiagonal form. */ +/* If JOBZ = 'N', the array Q is not referenced. */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. If JOBZ = 'N', */ +/* LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */ + +/* VL (input) REAL */ +/* VU (input) REAL */ +/* If RANGE='V', the lower and upper bounds of the interval to */ +/* be searched for eigenvalues. VL < VU. */ +/* Not referenced if RANGE = 'A' or 'I'. */ + +/* IL (input) INTEGER */ +/* IU (input) INTEGER */ +/* If RANGE='I', the indices (in ascending order) of the */ +/* smallest and largest eigenvalues to be returned. */ +/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ +/* Not referenced if RANGE = 'A' or 'V'. */ + +/* ABSTOL (input) REAL */ +/* The absolute error tolerance for the eigenvalues. */ +/* An approximate eigenvalue is accepted as converged */ +/* when it is determined to lie in an interval [a,b] */ +/* of width less than or equal to */ + +/* ABSTOL + EPS * max( |a|,|b| ) , */ + +/* where EPS is the machine precision. If ABSTOL is less than */ +/* or equal to zero, then EPS*|T| will be used in its place, */ +/* where |T| is the 1-norm of the tridiagonal matrix obtained */ +/* by reducing A to tridiagonal form. */ + +/* Eigenvalues will be computed most accurately when ABSTOL is */ +/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */ +/* If this routine returns with INFO>0, indicating that some */ +/* eigenvectors did not converge, try setting ABSTOL to */ +/* 2*SLAMCH('S'). */ + +/* M (output) INTEGER */ +/* The total number of eigenvalues found. 0 <= M <= N. */ +/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ + +/* W (output) REAL array, dimension (N) */ +/* If INFO = 0, the eigenvalues in ascending order. */ + +/* Z (output) REAL array, dimension (LDZ, N) */ +/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ +/* eigenvectors, with the i-th column of Z holding the */ +/* eigenvector associated with W(i). The eigenvectors are */ +/* normalized so Z**T*B*Z = I. */ +/* If JOBZ = 'N', then Z is not referenced. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* WORK (workspace/output) REAL array, dimension (7N) */ + +/* IWORK (workspace/output) INTEGER array, dimension (5N) */ + +/* IFAIL (output) INTEGER array, dimension (M) */ +/* If JOBZ = 'V', then if INFO = 0, the first M elements of */ +/* IFAIL are zero. If INFO > 0, then IFAIL contains the */ +/* indices of the eigenvalues that failed to converge. */ +/* If JOBZ = 'N', then IFAIL is not referenced. */ + +/* INFO (output) INTEGER */ +/* = 0 : successful exit */ +/* < 0 : if INFO = -i, the i-th argument had an illegal value */ +/* <= N: if INFO = i, then i eigenvectors failed to converge. */ +/* Their indices are stored in IFAIL. */ +/* > N : SPBSTF returned an error code; i.e., */ +/* if INFO = N + i, for 1 <= i <= N, then the leading */ +/* minor of order i of B is not positive definite. */ +/* The factorization of B could not be completed and */ +/* no eigenvalues or eigenvectors were computed. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + bb_dim1 = *ldbb; + bb_offset = 1 + bb_dim1; + bb -= bb_offset; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + --iwork; + --ifail; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + upper = lsame_(uplo, "U"); + alleig = lsame_(range, "A"); + valeig = lsame_(range, "V"); + indeig = lsame_(range, "I"); + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (alleig || valeig || indeig)) { + *info = -2; + } else if (! (upper || lsame_(uplo, "L"))) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*ka < 0) { + *info = -5; + } else if (*kb < 0 || *kb > *ka) { + *info = -6; + } else if (*ldab < *ka + 1) { + *info = -8; + } else if (*ldbb < *kb + 1) { + *info = -10; + } else if (*ldq < 1 || wantz && *ldq < *n) { + *info = -12; + } else { + if (valeig) { + if (*n > 0 && *vu <= *vl) { + *info = -14; + } + } else if (indeig) { + if (*il < 1 || *il > max(1,*n)) { + *info = -15; + } else if (*iu < min(*n,*il) || *iu > *n) { + *info = -16; + } + } + } + if (*info == 0) { + if (*ldz < 1 || wantz && *ldz < *n) { + *info = -21; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("SSBGVX", &i__1); + return 0; + } + +/* Quick return if possible */ + + *m = 0; + if (*n == 0) { + return 0; + } + +/* Form a split Cholesky factorization of B. */ + + spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); + if (*info != 0) { + *info = *n + *info; + return 0; + } + +/* Transform problem to standard eigenvalue problem. */ + + ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, + &q[q_offset], ldq, &work[1], &iinfo); + +/* Reduce symmetric band matrix to tridiagonal form. */ + + indd = 1; + inde = indd + *n; + indwrk = inde + *n; + if (wantz) { + *(unsigned char *)vect = 'U'; + } else { + *(unsigned char *)vect = 'N'; + } + ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &work[indd], &work[inde], + &q[q_offset], ldq, &work[indwrk], &iinfo); + +/* If all eigenvalues are desired and ABSTOL is less than or equal */ +/* to zero, then call SSTERF or SSTEQR. If this fails for some */ +/* eigenvalue, then try SSTEBZ. */ + + test = FALSE_; + if (indeig) { + if (*il == 1 && *iu == *n) { + test = TRUE_; + } + } + if ((alleig || test) && *abstol <= 0.f) { + scopy_(n, &work[indd], &c__1, &w[1], &c__1); + indee = indwrk + (*n << 1); + i__1 = *n - 1; + scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); + if (! wantz) { + ssterf_(n, &w[1], &work[indee], info); + } else { + slacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz); + ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[ + indwrk], info); + if (*info == 0) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + ifail[i__] = 0; +/* L10: */ + } + } + } + if (*info == 0) { + *m = *n; + goto L30; + } + *info = 0; + } + +/* Otherwise, call SSTEBZ and, if eigenvectors are desired, */ +/* call SSTEIN. */ + + if (wantz) { + *(unsigned char *)order = 'B'; + } else { + *(unsigned char *)order = 'E'; + } + indibl = 1; + indisp = indibl + *n; + indiwo = indisp + *n; + sstebz_(range, order, n, vl, vu, il, iu, abstol, &work[indd], &work[inde], + m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk], + &iwork[indiwo], info); + + if (wantz) { + sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ + indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], & + ifail[1], info); + +/* Apply transformation matrix used in reduction to tridiagonal */ +/* form to eigenvectors returned by SSTEIN. */ + + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + scopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1); + sgemv_("N", n, n, &c_b25, &q[q_offset], ldq, &work[1], &c__1, & + c_b27, &z__[j * z_dim1 + 1], &c__1); +/* L20: */ + } + } + +L30: + +/* If eigenvalues are not in order, then sort them, along with */ +/* eigenvectors. */ + + if (wantz) { + i__1 = *m - 1; + for (j = 1; j <= i__1; ++j) { + i__ = 0; + tmp1 = w[j]; + i__2 = *m; + for (jj = j + 1; jj <= i__2; ++jj) { + if (w[jj] < tmp1) { + i__ = jj; + tmp1 = w[jj]; + } +/* L40: */ + } + + if (i__ != 0) { + itmp1 = iwork[indibl + i__ - 1]; + w[i__] = w[j]; + iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; + w[j] = tmp1; + iwork[indibl + j - 1] = itmp1; + sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], + &c__1); + if (*info != 0) { + itmp1 = ifail[i__]; + ifail[i__] = ifail[j]; + ifail[j] = itmp1; + } + } +/* L50: */ + } + } + + return 0; + +/* End of SSBGVX */ + +} /* ssbgvx_ */ |