aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ssbgvx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ssbgvx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ssbgvx.c')
-rw-r--r--contrib/libs/clapack/ssbgvx.c461
1 files changed, 461 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ssbgvx.c b/contrib/libs/clapack/ssbgvx.c
new file mode 100644
index 0000000000..39873e5c5f
--- /dev/null
+++ b/contrib/libs/clapack/ssbgvx.c
@@ -0,0 +1,461 @@
+/* ssbgvx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static real c_b25 = 1.f;
+static real c_b27 = 0.f;
+
+/* Subroutine */ int ssbgvx_(char *jobz, char *range, char *uplo, integer *n,
+ integer *ka, integer *kb, real *ab, integer *ldab, real *bb, integer *
+ ldbb, real *q, integer *ldq, real *vl, real *vu, integer *il, integer
+ *iu, real *abstol, integer *m, real *w, real *z__, integer *ldz, real
+ *work, integer *iwork, integer *ifail, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1,
+ z_offset, i__1, i__2;
+
+ /* Local variables */
+ integer i__, j, jj;
+ real tmp1;
+ integer indd, inde;
+ char vect[1];
+ logical test;
+ integer itmp1, indee;
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ char order[1];
+ extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
+ real *, integer *, real *, integer *, real *, real *, integer *);
+ logical upper;
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *), sswap_(integer *, real *, integer *, real *, integer *
+);
+ logical wantz, alleig, indeig;
+ integer indibl;
+ logical valeig;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ integer indisp, indiwo;
+ extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
+ integer *, real *, integer *);
+ integer indwrk;
+ extern /* Subroutine */ int spbstf_(char *, integer *, integer *, real *,
+ integer *, integer *), ssbtrd_(char *, char *, integer *,
+ integer *, real *, integer *, real *, real *, real *, integer *,
+ real *, integer *), ssbgst_(char *, char *,
+ integer *, integer *, integer *, real *, integer *, real *,
+ integer *, real *, integer *, real *, integer *),
+ sstein_(integer *, real *, real *, integer *, real *, integer *,
+ integer *, real *, integer *, real *, integer *, integer *,
+ integer *), ssterf_(integer *, real *, real *, integer *);
+ integer nsplit;
+ extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *,
+ real *, integer *, integer *, real *, real *, real *, integer *,
+ integer *, real *, integer *, integer *, real *, integer *,
+ integer *), ssteqr_(char *, integer *, real *,
+ real *, real *, integer *, real *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SSBGVX computes selected eigenvalues, and optionally, eigenvectors */
+/* of a real generalized symmetric-definite banded eigenproblem, of */
+/* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */
+/* and banded, and B is also positive definite. Eigenvalues and */
+/* eigenvectors can be selected by specifying either all eigenvalues, */
+/* a range of values or a range of indices for the desired eigenvalues. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* RANGE (input) CHARACTER*1 */
+/* = 'A': all eigenvalues will be found. */
+/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
+/* will be found. */
+/* = 'I': the IL-th through IU-th eigenvalues will be found. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* KA (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
+
+/* KB (input) INTEGER */
+/* The number of superdiagonals of the matrix B if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
+
+/* AB (input/output) REAL array, dimension (LDAB, N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix A, stored in the first ka+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
+
+/* On exit, the contents of AB are destroyed. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KA+1. */
+
+/* BB (input/output) REAL array, dimension (LDBB, N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix B, stored in the first kb+1 rows of the array. The */
+/* j-th column of B is stored in the j-th column of the array BB */
+/* as follows: */
+/* if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
+/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */
+
+/* On exit, the factor S from the split Cholesky factorization */
+/* B = S**T*S, as returned by SPBSTF. */
+
+/* LDBB (input) INTEGER */
+/* The leading dimension of the array BB. LDBB >= KB+1. */
+
+/* Q (output) REAL array, dimension (LDQ, N) */
+/* If JOBZ = 'V', the n-by-n matrix used in the reduction of */
+/* A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */
+/* and consequently C to tridiagonal form. */
+/* If JOBZ = 'N', the array Q is not referenced. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. If JOBZ = 'N', */
+/* LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */
+
+/* VL (input) REAL */
+/* VU (input) REAL */
+/* If RANGE='V', the lower and upper bounds of the interval to */
+/* be searched for eigenvalues. VL < VU. */
+/* Not referenced if RANGE = 'A' or 'I'. */
+
+/* IL (input) INTEGER */
+/* IU (input) INTEGER */
+/* If RANGE='I', the indices (in ascending order) of the */
+/* smallest and largest eigenvalues to be returned. */
+/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
+/* Not referenced if RANGE = 'A' or 'V'. */
+
+/* ABSTOL (input) REAL */
+/* The absolute error tolerance for the eigenvalues. */
+/* An approximate eigenvalue is accepted as converged */
+/* when it is determined to lie in an interval [a,b] */
+/* of width less than or equal to */
+
+/* ABSTOL + EPS * max( |a|,|b| ) , */
+
+/* where EPS is the machine precision. If ABSTOL is less than */
+/* or equal to zero, then EPS*|T| will be used in its place, */
+/* where |T| is the 1-norm of the tridiagonal matrix obtained */
+/* by reducing A to tridiagonal form. */
+
+/* Eigenvalues will be computed most accurately when ABSTOL is */
+/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
+/* If this routine returns with INFO>0, indicating that some */
+/* eigenvectors did not converge, try setting ABSTOL to */
+/* 2*SLAMCH('S'). */
+
+/* M (output) INTEGER */
+/* The total number of eigenvalues found. 0 <= M <= N. */
+/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
+
+/* W (output) REAL array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* Z (output) REAL array, dimension (LDZ, N) */
+/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
+/* eigenvectors, with the i-th column of Z holding the */
+/* eigenvector associated with W(i). The eigenvectors are */
+/* normalized so Z**T*B*Z = I. */
+/* If JOBZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace/output) REAL array, dimension (7N) */
+
+/* IWORK (workspace/output) INTEGER array, dimension (5N) */
+
+/* IFAIL (output) INTEGER array, dimension (M) */
+/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
+/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
+/* indices of the eigenvalues that failed to converge. */
+/* If JOBZ = 'N', then IFAIL is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0 : successful exit */
+/* < 0 : if INFO = -i, the i-th argument had an illegal value */
+/* <= N: if INFO = i, then i eigenvectors failed to converge. */
+/* Their indices are stored in IFAIL. */
+/* > N : SPBSTF returned an error code; i.e., */
+/* if INFO = N + i, for 1 <= i <= N, then the leading */
+/* minor of order i of B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ bb_dim1 = *ldbb;
+ bb_offset = 1 + bb_dim1;
+ bb -= bb_offset;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --iwork;
+ --ifail;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+ alleig = lsame_(range, "A");
+ valeig = lsame_(range, "V");
+ indeig = lsame_(range, "I");
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (alleig || valeig || indeig)) {
+ *info = -2;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ka < 0) {
+ *info = -5;
+ } else if (*kb < 0 || *kb > *ka) {
+ *info = -6;
+ } else if (*ldab < *ka + 1) {
+ *info = -8;
+ } else if (*ldbb < *kb + 1) {
+ *info = -10;
+ } else if (*ldq < 1 || wantz && *ldq < *n) {
+ *info = -12;
+ } else {
+ if (valeig) {
+ if (*n > 0 && *vu <= *vl) {
+ *info = -14;
+ }
+ } else if (indeig) {
+ if (*il < 1 || *il > max(1,*n)) {
+ *info = -15;
+ } else if (*iu < min(*n,*il) || *iu > *n) {
+ *info = -16;
+ }
+ }
+ }
+ if (*info == 0) {
+ if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -21;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SSBGVX", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *m = 0;
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a split Cholesky factorization of B. */
+
+ spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem. */
+
+ ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
+ &q[q_offset], ldq, &work[1], &iinfo);
+
+/* Reduce symmetric band matrix to tridiagonal form. */
+
+ indd = 1;
+ inde = indd + *n;
+ indwrk = inde + *n;
+ if (wantz) {
+ *(unsigned char *)vect = 'U';
+ } else {
+ *(unsigned char *)vect = 'N';
+ }
+ ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &work[indd], &work[inde],
+ &q[q_offset], ldq, &work[indwrk], &iinfo);
+
+/* If all eigenvalues are desired and ABSTOL is less than or equal */
+/* to zero, then call SSTERF or SSTEQR. If this fails for some */
+/* eigenvalue, then try SSTEBZ. */
+
+ test = FALSE_;
+ if (indeig) {
+ if (*il == 1 && *iu == *n) {
+ test = TRUE_;
+ }
+ }
+ if ((alleig || test) && *abstol <= 0.f) {
+ scopy_(n, &work[indd], &c__1, &w[1], &c__1);
+ indee = indwrk + (*n << 1);
+ i__1 = *n - 1;
+ scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
+ if (! wantz) {
+ ssterf_(n, &w[1], &work[indee], info);
+ } else {
+ slacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
+ ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
+ indwrk], info);
+ if (*info == 0) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ ifail[i__] = 0;
+/* L10: */
+ }
+ }
+ }
+ if (*info == 0) {
+ *m = *n;
+ goto L30;
+ }
+ *info = 0;
+ }
+
+/* Otherwise, call SSTEBZ and, if eigenvectors are desired, */
+/* call SSTEIN. */
+
+ if (wantz) {
+ *(unsigned char *)order = 'B';
+ } else {
+ *(unsigned char *)order = 'E';
+ }
+ indibl = 1;
+ indisp = indibl + *n;
+ indiwo = indisp + *n;
+ sstebz_(range, order, n, vl, vu, il, iu, abstol, &work[indd], &work[inde],
+ m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk],
+ &iwork[indiwo], info);
+
+ if (wantz) {
+ sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
+ indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
+ ifail[1], info);
+
+/* Apply transformation matrix used in reduction to tridiagonal */
+/* form to eigenvectors returned by SSTEIN. */
+
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ scopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
+ sgemv_("N", n, n, &c_b25, &q[q_offset], ldq, &work[1], &c__1, &
+ c_b27, &z__[j * z_dim1 + 1], &c__1);
+/* L20: */
+ }
+ }
+
+L30:
+
+/* If eigenvalues are not in order, then sort them, along with */
+/* eigenvectors. */
+
+ if (wantz) {
+ i__1 = *m - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__ = 0;
+ tmp1 = w[j];
+ i__2 = *m;
+ for (jj = j + 1; jj <= i__2; ++jj) {
+ if (w[jj] < tmp1) {
+ i__ = jj;
+ tmp1 = w[jj];
+ }
+/* L40: */
+ }
+
+ if (i__ != 0) {
+ itmp1 = iwork[indibl + i__ - 1];
+ w[i__] = w[j];
+ iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
+ w[j] = tmp1;
+ iwork[indibl + j - 1] = itmp1;
+ sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
+ &c__1);
+ if (*info != 0) {
+ itmp1 = ifail[i__];
+ ifail[i__] = ifail[j];
+ ifail[j] = itmp1;
+ }
+ }
+/* L50: */
+ }
+ }
+
+ return 0;
+
+/* End of SSBGVX */
+
+} /* ssbgvx_ */