aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sptcon.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sptcon.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sptcon.c')
-rw-r--r--contrib/libs/clapack/sptcon.c184
1 files changed, 184 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sptcon.c b/contrib/libs/clapack/sptcon.c
new file mode 100644
index 0000000000..1861ebeee7
--- /dev/null
+++ b/contrib/libs/clapack/sptcon.c
@@ -0,0 +1,184 @@
+/* sptcon.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int sptcon_(integer *n, real *d__, real *e, real *anorm,
+ real *rcond, real *work, integer *info)
+{
+ /* System generated locals */
+ integer i__1;
+ real r__1;
+
+ /* Local variables */
+ integer i__, ix;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer isamax_(integer *, real *, integer *);
+ real ainvnm;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SPTCON computes the reciprocal of the condition number (in the */
+/* 1-norm) of a real symmetric positive definite tridiagonal matrix */
+/* using the factorization A = L*D*L**T or A = U**T*D*U computed by */
+/* SPTTRF. */
+
+/* Norm(inv(A)) is computed by a direct method, and the reciprocal of */
+/* the condition number is computed as */
+/* RCOND = 1 / (ANORM * norm(inv(A))). */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* D (input) REAL array, dimension (N) */
+/* The n diagonal elements of the diagonal matrix D from the */
+/* factorization of A, as computed by SPTTRF. */
+
+/* E (input) REAL array, dimension (N-1) */
+/* The (n-1) off-diagonal elements of the unit bidiagonal factor */
+/* U or L from the factorization of A, as computed by SPTTRF. */
+
+/* ANORM (input) REAL */
+/* The 1-norm of the original matrix A. */
+
+/* RCOND (output) REAL */
+/* The reciprocal of the condition number of the matrix A, */
+/* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */
+/* 1-norm of inv(A) computed in this routine. */
+
+/* WORK (workspace) REAL array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* The method used is described in Nicholas J. Higham, "Efficient */
+/* Algorithms for Computing the Condition Number of a Tridiagonal */
+/* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments. */
+
+ /* Parameter adjustments */
+ --work;
+ --e;
+ --d__;
+
+ /* Function Body */
+ *info = 0;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*anorm < 0.f) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SPTCON", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *rcond = 0.f;
+ if (*n == 0) {
+ *rcond = 1.f;
+ return 0;
+ } else if (*anorm == 0.f) {
+ return 0;
+ }
+
+/* Check that D(1:N) is positive. */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (d__[i__] <= 0.f) {
+ return 0;
+ }
+/* L10: */
+ }
+
+/* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
+
+/* m(i,j) = abs(A(i,j)), i = j, */
+/* m(i,j) = -abs(A(i,j)), i .ne. j, */
+
+/* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'. */
+
+/* Solve M(L) * x = e. */
+
+ work[1] = 1.f;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ work[i__] = work[i__ - 1] * (r__1 = e[i__ - 1], dabs(r__1)) + 1.f;
+/* L20: */
+ }
+
+/* Solve D * M(L)' * x = b. */
+
+ work[*n] /= d__[*n];
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+ work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (r__1 = e[i__],
+ dabs(r__1));
+/* L30: */
+ }
+
+/* Compute AINVNM = max(x(i)), 1<=i<=n. */
+
+ ix = isamax_(n, &work[1], &c__1);
+ ainvnm = (r__1 = work[ix], dabs(r__1));
+
+/* Compute the reciprocal condition number. */
+
+ if (ainvnm != 0.f) {
+ *rcond = 1.f / ainvnm / *anorm;
+ }
+
+ return 0;
+
+/* End of SPTCON */
+
+} /* sptcon_ */