diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sptcon.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sptcon.c')
-rw-r--r-- | contrib/libs/clapack/sptcon.c | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sptcon.c b/contrib/libs/clapack/sptcon.c new file mode 100644 index 0000000000..1861ebeee7 --- /dev/null +++ b/contrib/libs/clapack/sptcon.c @@ -0,0 +1,184 @@ +/* sptcon.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int sptcon_(integer *n, real *d__, real *e, real *anorm, + real *rcond, real *work, integer *info) +{ + /* System generated locals */ + integer i__1; + real r__1; + + /* Local variables */ + integer i__, ix; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer isamax_(integer *, real *, integer *); + real ainvnm; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SPTCON computes the reciprocal of the condition number (in the */ +/* 1-norm) of a real symmetric positive definite tridiagonal matrix */ +/* using the factorization A = L*D*L**T or A = U**T*D*U computed by */ +/* SPTTRF. */ + +/* Norm(inv(A)) is computed by a direct method, and the reciprocal of */ +/* the condition number is computed as */ +/* RCOND = 1 / (ANORM * norm(inv(A))). */ + +/* Arguments */ +/* ========= */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* D (input) REAL array, dimension (N) */ +/* The n diagonal elements of the diagonal matrix D from the */ +/* factorization of A, as computed by SPTTRF. */ + +/* E (input) REAL array, dimension (N-1) */ +/* The (n-1) off-diagonal elements of the unit bidiagonal factor */ +/* U or L from the factorization of A, as computed by SPTTRF. */ + +/* ANORM (input) REAL */ +/* The 1-norm of the original matrix A. */ + +/* RCOND (output) REAL */ +/* The reciprocal of the condition number of the matrix A, */ +/* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */ +/* 1-norm of inv(A) computed in this routine. */ + +/* WORK (workspace) REAL array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Further Details */ +/* =============== */ + +/* The method used is described in Nicholas J. Higham, "Efficient */ +/* Algorithms for Computing the Condition Number of a Tridiagonal */ +/* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments. */ + + /* Parameter adjustments */ + --work; + --e; + --d__; + + /* Function Body */ + *info = 0; + if (*n < 0) { + *info = -1; + } else if (*anorm < 0.f) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("SPTCON", &i__1); + return 0; + } + +/* Quick return if possible */ + + *rcond = 0.f; + if (*n == 0) { + *rcond = 1.f; + return 0; + } else if (*anorm == 0.f) { + return 0; + } + +/* Check that D(1:N) is positive. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + if (d__[i__] <= 0.f) { + return 0; + } +/* L10: */ + } + +/* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */ + +/* m(i,j) = abs(A(i,j)), i = j, */ +/* m(i,j) = -abs(A(i,j)), i .ne. j, */ + +/* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'. */ + +/* Solve M(L) * x = e. */ + + work[1] = 1.f; + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + work[i__] = work[i__ - 1] * (r__1 = e[i__ - 1], dabs(r__1)) + 1.f; +/* L20: */ + } + +/* Solve D * M(L)' * x = b. */ + + work[*n] /= d__[*n]; + for (i__ = *n - 1; i__ >= 1; --i__) { + work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (r__1 = e[i__], + dabs(r__1)); +/* L30: */ + } + +/* Compute AINVNM = max(x(i)), 1<=i<=n. */ + + ix = isamax_(n, &work[1], &c__1); + ainvnm = (r__1 = work[ix], dabs(r__1)); + +/* Compute the reciprocal condition number. */ + + if (ainvnm != 0.f) { + *rcond = 1.f / ainvnm / *anorm; + } + + return 0; + +/* End of SPTCON */ + +} /* sptcon_ */ |