aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/spftri.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/spftri.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/spftri.c')
-rw-r--r--contrib/libs/clapack/spftri.c402
1 files changed, 402 insertions, 0 deletions
diff --git a/contrib/libs/clapack/spftri.c b/contrib/libs/clapack/spftri.c
new file mode 100644
index 0000000000..fde795a5bf
--- /dev/null
+++ b/contrib/libs/clapack/spftri.c
@@ -0,0 +1,402 @@
+/* spftri.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static real c_b11 = 1.f;
+
+/* Subroutine */ int spftri_(char *transr, char *uplo, integer *n, real *a,
+ integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ integer k, n1, n2;
+ logical normaltransr;
+ extern logical lsame_(char *, char *);
+ logical lower;
+ extern /* Subroutine */ int strmm_(char *, char *, char *, char *,
+ integer *, integer *, real *, real *, integer *, real *, integer *
+), ssyrk_(char *, char *, integer
+ *, integer *, real *, real *, integer *, real *, real *, integer *
+), xerbla_(char *, integer *);
+ logical nisodd;
+ extern /* Subroutine */ int slauum_(char *, integer *, real *, integer *,
+ integer *), stftri_(char *, char *, char *, integer *,
+ real *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+
+/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
+/* -- November 2008 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+
+/* .. Scalar Arguments .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SPFTRI computes the inverse of a real (symmetric) positive definite */
+/* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */
+/* computed by SPFTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANSR (input) CHARACTER */
+/* = 'N': The Normal TRANSR of RFP A is stored; */
+/* = 'T': The Transpose TRANSR of RFP A is stored. */
+
+/* UPLO (input) CHARACTER */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) REAL array, dimension ( N*(N+1)/2 ) */
+/* On entry, the symmetric matrix A in RFP format. RFP format is */
+/* described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
+/* then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
+/* (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
+/* the transpose of RFP A as defined when */
+/* TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
+/* follows: If UPLO = 'U' the RFP A contains the nt elements of */
+/* upper packed A. If UPLO = 'L' the RFP A contains the elements */
+/* of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
+/* 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
+/* is odd. See the Note below for more details. */
+
+/* On exit, the symmetric inverse of the original matrix, in the */
+/* same storage format. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, the (i,i) element of the factor U or L is */
+/* zero, and the inverse could not be computed. */
+
+/* Notes */
+/* ===== */
+
+/* We first consider Rectangular Full Packed (RFP) Format when N is */
+/* even. We give an example where N = 6. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 05 00 */
+/* 11 12 13 14 15 10 11 */
+/* 22 23 24 25 20 21 22 */
+/* 33 34 35 30 31 32 33 */
+/* 44 45 40 41 42 43 44 */
+/* 55 50 51 52 53 54 55 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
+/* the transpose of the first three columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
+/* the transpose of the last three columns of AP lower. */
+/* This covers the case N even and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* 03 04 05 33 43 53 */
+/* 13 14 15 00 44 54 */
+/* 23 24 25 10 11 55 */
+/* 33 34 35 20 21 22 */
+/* 00 44 45 30 31 32 */
+/* 01 11 55 40 41 42 */
+/* 02 12 22 50 51 52 */
+
+/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
+/* transpose of RFP A above. One therefore gets: */
+
+
+/* RFP A RFP A */
+
+/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
+/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
+/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
+
+
+/* We first consider Rectangular Full Packed (RFP) Format when N is */
+/* odd. We give an example where N = 5. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 00 */
+/* 11 12 13 14 10 11 */
+/* 22 23 24 20 21 22 */
+/* 33 34 30 31 32 33 */
+/* 44 40 41 42 43 44 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
+/* the transpose of the first two columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
+/* the transpose of the last two columns of AP lower. */
+/* This covers the case N odd and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* 02 03 04 00 33 43 */
+/* 12 13 14 10 11 44 */
+/* 22 23 24 20 21 22 */
+/* 00 33 34 30 31 32 */
+/* 01 11 44 40 41 42 */
+
+/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
+/* transpose of RFP A above. One therefore gets: */
+
+/* RFP A RFP A */
+
+/* 02 12 22 00 01 00 10 20 30 40 50 */
+/* 03 13 23 33 11 33 11 21 31 41 51 */
+/* 04 14 24 34 44 43 44 22 32 42 52 */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ *info = 0;
+ normaltransr = lsame_(transr, "N");
+ lower = lsame_(uplo, "L");
+ if (! normaltransr && ! lsame_(transr, "T")) {
+ *info = -1;
+ } else if (! lower && ! lsame_(uplo, "U")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SPFTRI", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Invert the triangular Cholesky factor U or L. */
+
+ stftri_(transr, uplo, "N", n, a, info);
+ if (*info > 0) {
+ return 0;
+ }
+
+/* If N is odd, set NISODD = .TRUE. */
+/* If N is even, set K = N/2 and NISODD = .FALSE. */
+
+ if (*n % 2 == 0) {
+ k = *n / 2;
+ nisodd = FALSE_;
+ } else {
+ nisodd = TRUE_;
+ }
+
+/* Set N1 and N2 depending on LOWER */
+
+ if (lower) {
+ n2 = *n / 2;
+ n1 = *n - n2;
+ } else {
+ n1 = *n / 2;
+ n2 = *n - n1;
+ }
+
+/* Start execution of triangular matrix multiply: inv(U)*inv(U)^C or */
+/* inv(L)^C*inv(L). There are eight cases. */
+
+ if (nisodd) {
+
+/* N is odd */
+
+ if (normaltransr) {
+
+/* N is odd and TRANSR = 'N' */
+
+ if (lower) {
+
+/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) ) */
+/* T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0) */
+/* T1 -> a(0), T2 -> a(n), S -> a(N1) */
+
+ slauum_("L", &n1, a, n, info);
+ ssyrk_("L", "T", &n1, &n2, &c_b11, &a[n1], n, &c_b11, a, n);
+ strmm_("L", "U", "N", "N", &n2, &n1, &c_b11, &a[*n], n, &a[n1]
+, n);
+ slauum_("U", &n2, &a[*n], n, info);
+
+ } else {
+
+/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1) */
+/* T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0) */
+/* T1 -> a(N2), T2 -> a(N1), S -> a(0) */
+
+ slauum_("L", &n1, &a[n2], n, info);
+ ssyrk_("L", "N", &n1, &n2, &c_b11, a, n, &c_b11, &a[n2], n);
+ strmm_("R", "U", "T", "N", &n1, &n2, &c_b11, &a[n1], n, a, n);
+ slauum_("U", &n2, &a[n1], n, info);
+
+ }
+
+ } else {
+
+/* N is odd and TRANSR = 'T' */
+
+ if (lower) {
+
+/* SRPA for LOWER, TRANSPOSE, and N is odd */
+/* T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1) */
+
+ slauum_("U", &n1, a, &n1, info);
+ ssyrk_("U", "N", &n1, &n2, &c_b11, &a[n1 * n1], &n1, &c_b11,
+ a, &n1);
+ strmm_("R", "L", "N", "N", &n1, &n2, &c_b11, &a[1], &n1, &a[
+ n1 * n1], &n1);
+ slauum_("L", &n2, &a[1], &n1, info);
+
+ } else {
+
+/* SRPA for UPPER, TRANSPOSE, and N is odd */
+/* T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0) */
+
+ slauum_("U", &n1, &a[n2 * n2], &n2, info);
+ ssyrk_("U", "T", &n1, &n2, &c_b11, a, &n2, &c_b11, &a[n2 * n2]
+, &n2);
+ strmm_("L", "L", "T", "N", &n2, &n1, &c_b11, &a[n1 * n2], &n2,
+ a, &n2);
+ slauum_("L", &n2, &a[n1 * n2], &n2, info);
+
+ }
+
+ }
+
+ } else {
+
+/* N is even */
+
+ if (normaltransr) {
+
+/* N is even and TRANSR = 'N' */
+
+ if (lower) {
+
+/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
+/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
+/* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
+
+ i__1 = *n + 1;
+ slauum_("L", &k, &a[1], &i__1, info);
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ ssyrk_("L", "T", &k, &k, &c_b11, &a[k + 1], &i__1, &c_b11, &a[
+ 1], &i__2);
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ strmm_("L", "U", "N", "N", &k, &k, &c_b11, a, &i__1, &a[k + 1]
+, &i__2);
+ i__1 = *n + 1;
+ slauum_("U", &k, a, &i__1, info);
+
+ } else {
+
+/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
+/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
+/* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
+
+ i__1 = *n + 1;
+ slauum_("L", &k, &a[k + 1], &i__1, info);
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ ssyrk_("L", "N", &k, &k, &c_b11, a, &i__1, &c_b11, &a[k + 1],
+ &i__2);
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ strmm_("R", "U", "T", "N", &k, &k, &c_b11, &a[k], &i__1, a, &
+ i__2);
+ i__1 = *n + 1;
+ slauum_("U", &k, &a[k], &i__1, info);
+
+ }
+
+ } else {
+
+/* N is even and TRANSR = 'T' */
+
+ if (lower) {
+
+/* SRPA for LOWER, TRANSPOSE, and N is even (see paper) */
+/* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1), */
+/* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
+
+ slauum_("U", &k, &a[k], &k, info);
+ ssyrk_("U", "N", &k, &k, &c_b11, &a[k * (k + 1)], &k, &c_b11,
+ &a[k], &k);
+ strmm_("R", "L", "N", "N", &k, &k, &c_b11, a, &k, &a[k * (k +
+ 1)], &k);
+ slauum_("L", &k, a, &k, info);
+
+ } else {
+
+/* SRPA for UPPER, TRANSPOSE, and N is even (see paper) */
+/* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0), */
+/* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
+
+ slauum_("U", &k, &a[k * (k + 1)], &k, info);
+ ssyrk_("U", "T", &k, &k, &c_b11, a, &k, &c_b11, &a[k * (k + 1)
+ ], &k);
+ strmm_("L", "L", "T", "N", &k, &k, &c_b11, &a[k * k], &k, a, &
+ k);
+ slauum_("L", &k, &a[k * k], &k, info);
+
+ }
+
+ }
+
+ }
+
+ return 0;
+
+/* End of SPFTRI */
+
+} /* spftri_ */