diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/spftri.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/spftri.c')
-rw-r--r-- | contrib/libs/clapack/spftri.c | 402 |
1 files changed, 402 insertions, 0 deletions
diff --git a/contrib/libs/clapack/spftri.c b/contrib/libs/clapack/spftri.c new file mode 100644 index 0000000000..fde795a5bf --- /dev/null +++ b/contrib/libs/clapack/spftri.c @@ -0,0 +1,402 @@ +/* spftri.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static real c_b11 = 1.f; + +/* Subroutine */ int spftri_(char *transr, char *uplo, integer *n, real *a, + integer *info) +{ + /* System generated locals */ + integer i__1, i__2; + + /* Local variables */ + integer k, n1, n2; + logical normaltransr; + extern logical lsame_(char *, char *); + logical lower; + extern /* Subroutine */ int strmm_(char *, char *, char *, char *, + integer *, integer *, real *, real *, integer *, real *, integer * +), ssyrk_(char *, char *, integer + *, integer *, real *, real *, integer *, real *, real *, integer * +), xerbla_(char *, integer *); + logical nisodd; + extern /* Subroutine */ int slauum_(char *, integer *, real *, integer *, + integer *), stftri_(char *, char *, char *, integer *, + real *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ + +/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */ +/* -- November 2008 -- */ + +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ + +/* .. Scalar Arguments .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SPFTRI computes the inverse of a real (symmetric) positive definite */ +/* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */ +/* computed by SPFTRF. */ + +/* Arguments */ +/* ========= */ + +/* TRANSR (input) CHARACTER */ +/* = 'N': The Normal TRANSR of RFP A is stored; */ +/* = 'T': The Transpose TRANSR of RFP A is stored. */ + +/* UPLO (input) CHARACTER */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) REAL array, dimension ( N*(N+1)/2 ) */ +/* On entry, the symmetric matrix A in RFP format. RFP format is */ +/* described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */ +/* then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */ +/* (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */ +/* the transpose of RFP A as defined when */ +/* TRANSR = 'N'. The contents of RFP A are defined by UPLO as */ +/* follows: If UPLO = 'U' the RFP A contains the nt elements of */ +/* upper packed A. If UPLO = 'L' the RFP A contains the elements */ +/* of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */ +/* 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */ +/* is odd. See the Note below for more details. */ + +/* On exit, the symmetric inverse of the original matrix, in the */ +/* same storage format. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, the (i,i) element of the factor U or L is */ +/* zero, and the inverse could not be computed. */ + +/* Notes */ +/* ===== */ + +/* We first consider Rectangular Full Packed (RFP) Format when N is */ +/* even. We give an example where N = 6. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 05 00 */ +/* 11 12 13 14 15 10 11 */ +/* 22 23 24 25 20 21 22 */ +/* 33 34 35 30 31 32 33 */ +/* 44 45 40 41 42 43 44 */ +/* 55 50 51 52 53 54 55 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */ +/* the transpose of the first three columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */ +/* the transpose of the last three columns of AP lower. */ +/* This covers the case N even and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* 03 04 05 33 43 53 */ +/* 13 14 15 00 44 54 */ +/* 23 24 25 10 11 55 */ +/* 33 34 35 20 21 22 */ +/* 00 44 45 30 31 32 */ +/* 01 11 55 40 41 42 */ +/* 02 12 22 50 51 52 */ + +/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ +/* transpose of RFP A above. One therefore gets: */ + + +/* RFP A RFP A */ + +/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */ +/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */ +/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */ + + +/* We first consider Rectangular Full Packed (RFP) Format when N is */ +/* odd. We give an example where N = 5. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 00 */ +/* 11 12 13 14 10 11 */ +/* 22 23 24 20 21 22 */ +/* 33 34 30 31 32 33 */ +/* 44 40 41 42 43 44 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */ +/* the transpose of the first two columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */ +/* the transpose of the last two columns of AP lower. */ +/* This covers the case N odd and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* 02 03 04 00 33 43 */ +/* 12 13 14 10 11 44 */ +/* 22 23 24 20 21 22 */ +/* 00 33 34 30 31 32 */ +/* 01 11 44 40 41 42 */ + +/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ +/* transpose of RFP A above. One therefore gets: */ + +/* RFP A RFP A */ + +/* 02 12 22 00 01 00 10 20 30 40 50 */ +/* 03 13 23 33 11 33 11 21 31 41 51 */ +/* 04 14 24 34 44 43 44 22 32 42 52 */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + *info = 0; + normaltransr = lsame_(transr, "N"); + lower = lsame_(uplo, "L"); + if (! normaltransr && ! lsame_(transr, "T")) { + *info = -1; + } else if (! lower && ! lsame_(uplo, "U")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("SPFTRI", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Invert the triangular Cholesky factor U or L. */ + + stftri_(transr, uplo, "N", n, a, info); + if (*info > 0) { + return 0; + } + +/* If N is odd, set NISODD = .TRUE. */ +/* If N is even, set K = N/2 and NISODD = .FALSE. */ + + if (*n % 2 == 0) { + k = *n / 2; + nisodd = FALSE_; + } else { + nisodd = TRUE_; + } + +/* Set N1 and N2 depending on LOWER */ + + if (lower) { + n2 = *n / 2; + n1 = *n - n2; + } else { + n1 = *n / 2; + n2 = *n - n1; + } + +/* Start execution of triangular matrix multiply: inv(U)*inv(U)^C or */ +/* inv(L)^C*inv(L). There are eight cases. */ + + if (nisodd) { + +/* N is odd */ + + if (normaltransr) { + +/* N is odd and TRANSR = 'N' */ + + if (lower) { + +/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) ) */ +/* T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0) */ +/* T1 -> a(0), T2 -> a(n), S -> a(N1) */ + + slauum_("L", &n1, a, n, info); + ssyrk_("L", "T", &n1, &n2, &c_b11, &a[n1], n, &c_b11, a, n); + strmm_("L", "U", "N", "N", &n2, &n1, &c_b11, &a[*n], n, &a[n1] +, n); + slauum_("U", &n2, &a[*n], n, info); + + } else { + +/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1) */ +/* T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0) */ +/* T1 -> a(N2), T2 -> a(N1), S -> a(0) */ + + slauum_("L", &n1, &a[n2], n, info); + ssyrk_("L", "N", &n1, &n2, &c_b11, a, n, &c_b11, &a[n2], n); + strmm_("R", "U", "T", "N", &n1, &n2, &c_b11, &a[n1], n, a, n); + slauum_("U", &n2, &a[n1], n, info); + + } + + } else { + +/* N is odd and TRANSR = 'T' */ + + if (lower) { + +/* SRPA for LOWER, TRANSPOSE, and N is odd */ +/* T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1) */ + + slauum_("U", &n1, a, &n1, info); + ssyrk_("U", "N", &n1, &n2, &c_b11, &a[n1 * n1], &n1, &c_b11, + a, &n1); + strmm_("R", "L", "N", "N", &n1, &n2, &c_b11, &a[1], &n1, &a[ + n1 * n1], &n1); + slauum_("L", &n2, &a[1], &n1, info); + + } else { + +/* SRPA for UPPER, TRANSPOSE, and N is odd */ +/* T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0) */ + + slauum_("U", &n1, &a[n2 * n2], &n2, info); + ssyrk_("U", "T", &n1, &n2, &c_b11, a, &n2, &c_b11, &a[n2 * n2] +, &n2); + strmm_("L", "L", "T", "N", &n2, &n1, &c_b11, &a[n1 * n2], &n2, + a, &n2); + slauum_("L", &n2, &a[n1 * n2], &n2, info); + + } + + } + + } else { + +/* N is even */ + + if (normaltransr) { + +/* N is even and TRANSR = 'N' */ + + if (lower) { + +/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ +/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */ +/* T1 -> a(1), T2 -> a(0), S -> a(k+1) */ + + i__1 = *n + 1; + slauum_("L", &k, &a[1], &i__1, info); + i__1 = *n + 1; + i__2 = *n + 1; + ssyrk_("L", "T", &k, &k, &c_b11, &a[k + 1], &i__1, &c_b11, &a[ + 1], &i__2); + i__1 = *n + 1; + i__2 = *n + 1; + strmm_("L", "U", "N", "N", &k, &k, &c_b11, a, &i__1, &a[k + 1] +, &i__2); + i__1 = *n + 1; + slauum_("U", &k, a, &i__1, info); + + } else { + +/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ +/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */ +/* T1 -> a(k+1), T2 -> a(k), S -> a(0) */ + + i__1 = *n + 1; + slauum_("L", &k, &a[k + 1], &i__1, info); + i__1 = *n + 1; + i__2 = *n + 1; + ssyrk_("L", "N", &k, &k, &c_b11, a, &i__1, &c_b11, &a[k + 1], + &i__2); + i__1 = *n + 1; + i__2 = *n + 1; + strmm_("R", "U", "T", "N", &k, &k, &c_b11, &a[k], &i__1, a, & + i__2); + i__1 = *n + 1; + slauum_("U", &k, &a[k], &i__1, info); + + } + + } else { + +/* N is even and TRANSR = 'T' */ + + if (lower) { + +/* SRPA for LOWER, TRANSPOSE, and N is even (see paper) */ +/* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1), */ +/* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */ + + slauum_("U", &k, &a[k], &k, info); + ssyrk_("U", "N", &k, &k, &c_b11, &a[k * (k + 1)], &k, &c_b11, + &a[k], &k); + strmm_("R", "L", "N", "N", &k, &k, &c_b11, a, &k, &a[k * (k + + 1)], &k); + slauum_("L", &k, a, &k, info); + + } else { + +/* SRPA for UPPER, TRANSPOSE, and N is even (see paper) */ +/* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0), */ +/* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */ + + slauum_("U", &k, &a[k * (k + 1)], &k, info); + ssyrk_("U", "T", &k, &k, &c_b11, a, &k, &c_b11, &a[k * (k + 1) + ], &k); + strmm_("L", "L", "T", "N", &k, &k, &c_b11, &a[k * k], &k, a, & + k); + slauum_("L", &k, &a[k * k], &k, info); + + } + + } + + } + + return 0; + +/* End of SPFTRI */ + +} /* spftri_ */ |