aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/spbtrf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/spbtrf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/spbtrf.c')
-rw-r--r--contrib/libs/clapack/spbtrf.c469
1 files changed, 469 insertions, 0 deletions
diff --git a/contrib/libs/clapack/spbtrf.c b/contrib/libs/clapack/spbtrf.c
new file mode 100644
index 0000000000..8f8ccca045
--- /dev/null
+++ b/contrib/libs/clapack/spbtrf.c
@@ -0,0 +1,469 @@
+/* spbtrf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static real c_b18 = 1.f;
+static real c_b21 = -1.f;
+static integer c__33 = 33;
+
+/* Subroutine */ int spbtrf_(char *uplo, integer *n, integer *kd, real *ab,
+ integer *ldab, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ integer i__, j, i2, i3, ib, nb, ii, jj;
+ real work[1056] /* was [33][32] */;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
+ integer *, real *, real *, integer *, real *, integer *, real *,
+ real *, integer *), strsm_(char *, char *, char *,
+ char *, integer *, integer *, real *, real *, integer *, real *,
+ integer *), ssyrk_(char *, char *,
+ integer *, integer *, real *, real *, integer *, real *, real *,
+ integer *), spbtf2_(char *, integer *, integer *,
+ real *, integer *, integer *), spotf2_(char *, integer *,
+ real *, integer *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SPBTRF computes the Cholesky factorization of a real symmetric */
+/* positive definite band matrix A. */
+
+/* The factorization has the form */
+/* A = U**T * U, if UPLO = 'U', or */
+/* A = L * L**T, if UPLO = 'L', */
+/* where U is an upper triangular matrix and L is lower triangular. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
+
+/* AB (input/output) REAL array, dimension (LDAB,N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix A, stored in the first KD+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
+
+/* On exit, if INFO = 0, the triangular factor U or L from the */
+/* Cholesky factorization A = U**T*U or A = L*L**T of the band */
+/* matrix A, in the same storage format as A. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD+1. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, the leading minor of order i is not */
+/* positive definite, and the factorization could not be */
+/* completed. */
+
+/* Further Details */
+/* =============== */
+
+/* The band storage scheme is illustrated by the following example, when */
+/* N = 6, KD = 2, and UPLO = 'U': */
+
+/* On entry: On exit: */
+
+/* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
+/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
+/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
+
+/* Similarly, if UPLO = 'L' the format of A is as follows: */
+
+/* On entry: On exit: */
+
+/* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
+/* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
+/* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
+
+/* Array elements marked * are not used by the routine. */
+
+/* Contributed by */
+/* Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+
+ /* Function Body */
+ *info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*kd < 0) {
+ *info = -3;
+ } else if (*ldab < *kd + 1) {
+ *info = -5;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SPBTRF", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Determine the block size for this environment */
+
+ nb = ilaenv_(&c__1, "SPBTRF", uplo, n, kd, &c_n1, &c_n1);
+
+/* The block size must not exceed the semi-bandwidth KD, and must not */
+/* exceed the limit set by the size of the local array WORK. */
+
+ nb = min(nb,32);
+
+ if (nb <= 1 || nb > *kd) {
+
+/* Use unblocked code */
+
+ spbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
+ } else {
+
+/* Use blocked code */
+
+ if (lsame_(uplo, "U")) {
+
+/* Compute the Cholesky factorization of a symmetric band */
+/* matrix, given the upper triangle of the matrix in band */
+/* storage. */
+
+/* Zero the upper triangle of the work array. */
+
+ i__1 = nb;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[i__ + j * 33 - 34] = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+
+/* Process the band matrix one diagonal block at a time. */
+
+ i__1 = *n;
+ i__2 = nb;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__3 = nb, i__4 = *n - i__ + 1;
+ ib = min(i__3,i__4);
+
+/* Factorize the diagonal block */
+
+ i__3 = *ldab - 1;
+ spotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
+ if (ii != 0) {
+ *info = i__ + ii - 1;
+ goto L150;
+ }
+ if (i__ + ib <= *n) {
+
+/* Update the relevant part of the trailing submatrix. */
+/* If A11 denotes the diagonal block which has just been */
+/* factorized, then we need to update the remaining */
+/* blocks in the diagram: */
+
+/* A11 A12 A13 */
+/* A22 A23 */
+/* A33 */
+
+/* The numbers of rows and columns in the partitioning */
+/* are IB, I2, I3 respectively. The blocks A12, A22 and */
+/* A23 are empty if IB = KD. The upper triangle of A13 */
+/* lies outside the band. */
+
+/* Computing MIN */
+ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
+ i2 = min(i__3,i__4);
+/* Computing MIN */
+ i__3 = ib, i__4 = *n - i__ - *kd + 1;
+ i3 = min(i__3,i__4);
+
+ if (i2 > 0) {
+
+/* Update A12 */
+
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ strsm_("Left", "Upper", "Transpose", "Non-unit", &ib,
+ &i2, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
+ i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1]
+, &i__4);
+
+/* Update A22 */
+
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ ssyrk_("Upper", "Transpose", &i2, &ib, &c_b21, &ab[*
+ kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &
+ c_b18, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &
+ i__4);
+ }
+
+ if (i3 > 0) {
+
+/* Copy the lower triangle of A13 into the work array. */
+
+ i__3 = i3;
+ for (jj = 1; jj <= i__3; ++jj) {
+ i__4 = ib;
+ for (ii = jj; ii <= i__4; ++ii) {
+ work[ii + jj * 33 - 34] = ab[ii - jj + 1 + (
+ jj + i__ + *kd - 1) * ab_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+
+/* Update A13 (in the work array). */
+
+ i__3 = *ldab - 1;
+ strsm_("Left", "Upper", "Transpose", "Non-unit", &ib,
+ &i3, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
+ i__3, work, &c__33);
+
+/* Update A23 */
+
+ if (i2 > 0) {
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ sgemm_("Transpose", "No Transpose", &i2, &i3, &ib,
+ &c_b21, &ab[*kd + 1 - ib + (i__ + ib) *
+ ab_dim1], &i__3, work, &c__33, &c_b18, &
+ ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4);
+ }
+
+/* Update A33 */
+
+ i__3 = *ldab - 1;
+ ssyrk_("Upper", "Transpose", &i3, &ib, &c_b21, work, &
+ c__33, &c_b18, &ab[*kd + 1 + (i__ + *kd) *
+ ab_dim1], &i__3);
+
+/* Copy the lower triangle of A13 back into place. */
+
+ i__3 = i3;
+ for (jj = 1; jj <= i__3; ++jj) {
+ i__4 = ib;
+ for (ii = jj; ii <= i__4; ++ii) {
+ ab[ii - jj + 1 + (jj + i__ + *kd - 1) *
+ ab_dim1] = work[ii + jj * 33 - 34];
+/* L50: */
+ }
+/* L60: */
+ }
+ }
+ }
+/* L70: */
+ }
+ } else {
+
+/* Compute the Cholesky factorization of a symmetric band */
+/* matrix, given the lower triangle of the matrix in band */
+/* storage. */
+
+/* Zero the lower triangle of the work array. */
+
+ i__2 = nb;
+ for (j = 1; j <= i__2; ++j) {
+ i__1 = nb;
+ for (i__ = j + 1; i__ <= i__1; ++i__) {
+ work[i__ + j * 33 - 34] = 0.f;
+/* L80: */
+ }
+/* L90: */
+ }
+
+/* Process the band matrix one diagonal block at a time. */
+
+ i__2 = *n;
+ i__1 = nb;
+ for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
+/* Computing MIN */
+ i__3 = nb, i__4 = *n - i__ + 1;
+ ib = min(i__3,i__4);
+
+/* Factorize the diagonal block */
+
+ i__3 = *ldab - 1;
+ spotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
+ if (ii != 0) {
+ *info = i__ + ii - 1;
+ goto L150;
+ }
+ if (i__ + ib <= *n) {
+
+/* Update the relevant part of the trailing submatrix. */
+/* If A11 denotes the diagonal block which has just been */
+/* factorized, then we need to update the remaining */
+/* blocks in the diagram: */
+
+/* A11 */
+/* A21 A22 */
+/* A31 A32 A33 */
+
+/* The numbers of rows and columns in the partitioning */
+/* are IB, I2, I3 respectively. The blocks A21, A22 and */
+/* A32 are empty if IB = KD. The lower triangle of A31 */
+/* lies outside the band. */
+
+/* Computing MIN */
+ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
+ i2 = min(i__3,i__4);
+/* Computing MIN */
+ i__3 = ib, i__4 = *n - i__ - *kd + 1;
+ i3 = min(i__3,i__4);
+
+ if (i2 > 0) {
+
+/* Update A21 */
+
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ strsm_("Right", "Lower", "Transpose", "Non-unit", &i2,
+ &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3, &
+ ab[ib + 1 + i__ * ab_dim1], &i__4);
+
+/* Update A22 */
+
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ ssyrk_("Lower", "No Transpose", &i2, &ib, &c_b21, &ab[
+ ib + 1 + i__ * ab_dim1], &i__3, &c_b18, &ab[(
+ i__ + ib) * ab_dim1 + 1], &i__4);
+ }
+
+ if (i3 > 0) {
+
+/* Copy the upper triangle of A31 into the work array. */
+
+ i__3 = ib;
+ for (jj = 1; jj <= i__3; ++jj) {
+ i__4 = min(jj,i3);
+ for (ii = 1; ii <= i__4; ++ii) {
+ work[ii + jj * 33 - 34] = ab[*kd + 1 - jj +
+ ii + (jj + i__ - 1) * ab_dim1];
+/* L100: */
+ }
+/* L110: */
+ }
+
+/* Update A31 (in the work array). */
+
+ i__3 = *ldab - 1;
+ strsm_("Right", "Lower", "Transpose", "Non-unit", &i3,
+ &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3,
+ work, &c__33);
+
+/* Update A32 */
+
+ if (i2 > 0) {
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ sgemm_("No transpose", "Transpose", &i3, &i2, &ib,
+ &c_b21, work, &c__33, &ab[ib + 1 + i__ *
+ ab_dim1], &i__3, &c_b18, &ab[*kd + 1 - ib
+ + (i__ + ib) * ab_dim1], &i__4);
+ }
+
+/* Update A33 */
+
+ i__3 = *ldab - 1;
+ ssyrk_("Lower", "No Transpose", &i3, &ib, &c_b21,
+ work, &c__33, &c_b18, &ab[(i__ + *kd) *
+ ab_dim1 + 1], &i__3);
+
+/* Copy the upper triangle of A31 back into place. */
+
+ i__3 = ib;
+ for (jj = 1; jj <= i__3; ++jj) {
+ i__4 = min(jj,i3);
+ for (ii = 1; ii <= i__4; ++ii) {
+ ab[*kd + 1 - jj + ii + (jj + i__ - 1) *
+ ab_dim1] = work[ii + jj * 33 - 34];
+/* L120: */
+ }
+/* L130: */
+ }
+ }
+ }
+/* L140: */
+ }
+ }
+ }
+ return 0;
+
+L150:
+ return 0;
+
+/* End of SPBTRF */
+
+} /* spbtrf_ */