diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slatdf.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slatdf.c')
-rw-r--r-- | contrib/libs/clapack/slatdf.c | 301 |
1 files changed, 301 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slatdf.c b/contrib/libs/clapack/slatdf.c new file mode 100644 index 0000000000..3f9bbb062c --- /dev/null +++ b/contrib/libs/clapack/slatdf.c @@ -0,0 +1,301 @@ +/* slatdf.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static real c_b23 = 1.f; +static real c_b37 = -1.f; + +/* Subroutine */ int slatdf_(integer *ijob, integer *n, real *z__, integer * + ldz, real *rhs, real *rdsum, real *rdscal, integer *ipiv, integer * + jpiv) +{ + /* System generated locals */ + integer z_dim1, z_offset, i__1, i__2; + real r__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, k; + real bm, bp, xm[8], xp[8]; + integer info; + real temp; + extern doublereal sdot_(integer *, real *, integer *, real *, integer *); + real work[32]; + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + real pmone; + extern doublereal sasum_(integer *, real *, integer *); + real sminu; + integer iwork[8]; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *), saxpy_(integer *, real *, real *, integer *, real *, + integer *); + real splus; + extern /* Subroutine */ int sgesc2_(integer *, real *, integer *, real *, + integer *, integer *, real *), sgecon_(char *, integer *, real *, + integer *, real *, real *, real *, integer *, integer *), + slassq_(integer *, real *, integer *, real *, real *), slaswp_( + integer *, real *, integer *, integer *, integer *, integer *, + integer *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SLATDF uses the LU factorization of the n-by-n matrix Z computed by */ +/* SGETC2 and computes a contribution to the reciprocal Dif-estimate */ +/* by solving Z * x = b for x, and choosing the r.h.s. b such that */ +/* the norm of x is as large as possible. On entry RHS = b holds the */ +/* contribution from earlier solved sub-systems, and on return RHS = x. */ + +/* The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q, */ +/* where P and Q are permutation matrices. L is lower triangular with */ +/* unit diagonal elements and U is upper triangular. */ + +/* Arguments */ +/* ========= */ + +/* IJOB (input) INTEGER */ +/* IJOB = 2: First compute an approximative null-vector e */ +/* of Z using SGECON, e is normalized and solve for */ +/* Zx = +-e - f with the sign giving the greater value */ +/* of 2-norm(x). About 5 times as expensive as Default. */ +/* IJOB .ne. 2: Local look ahead strategy where all entries of */ +/* the r.h.s. b is choosen as either +1 or -1 (Default). */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix Z. */ + +/* Z (input) REAL array, dimension (LDZ, N) */ +/* On entry, the LU part of the factorization of the n-by-n */ +/* matrix Z computed by SGETC2: Z = P * L * U * Q */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDA >= max(1, N). */ + +/* RHS (input/output) REAL array, dimension N. */ +/* On entry, RHS contains contributions from other subsystems. */ +/* On exit, RHS contains the solution of the subsystem with */ +/* entries acoording to the value of IJOB (see above). */ + +/* RDSUM (input/output) REAL */ +/* On entry, the sum of squares of computed contributions to */ +/* the Dif-estimate under computation by STGSYL, where the */ +/* scaling factor RDSCAL (see below) has been factored out. */ +/* On exit, the corresponding sum of squares updated with the */ +/* contributions from the current sub-system. */ +/* If TRANS = 'T' RDSUM is not touched. */ +/* NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL. */ + +/* RDSCAL (input/output) REAL */ +/* On entry, scaling factor used to prevent overflow in RDSUM. */ +/* On exit, RDSCAL is updated w.r.t. the current contributions */ +/* in RDSUM. */ +/* If TRANS = 'T', RDSCAL is not touched. */ +/* NOTE: RDSCAL only makes sense when STGSY2 is called by */ +/* STGSYL. */ + +/* IPIV (input) INTEGER array, dimension (N). */ +/* The pivot indices; for 1 <= i <= N, row i of the */ +/* matrix has been interchanged with row IPIV(i). */ + +/* JPIV (input) INTEGER array, dimension (N). */ +/* The pivot indices; for 1 <= j <= N, column j of the */ +/* matrix has been interchanged with column JPIV(j). */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* This routine is a further developed implementation of algorithm */ +/* BSOLVE in [1] using complete pivoting in the LU factorization. */ + +/* [1] Bo Kagstrom and Lars Westin, */ +/* Generalized Schur Methods with Condition Estimators for */ +/* Solving the Generalized Sylvester Equation, IEEE Transactions */ +/* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */ + +/* [2] Peter Poromaa, */ +/* On Efficient and Robust Estimators for the Separation */ +/* between two Regular Matrix Pairs with Applications in */ +/* Condition Estimation. Report IMINF-95.05, Departement of */ +/* Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --rhs; + --ipiv; + --jpiv; + + /* Function Body */ + if (*ijob != 2) { + +/* Apply permutations IPIV to RHS */ + + i__1 = *n - 1; + slaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1); + +/* Solve for L-part choosing RHS either to +1 or -1. */ + + pmone = -1.f; + + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + bp = rhs[j] + 1.f; + bm = rhs[j] - 1.f; + splus = 1.f; + +/* Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */ +/* SMIN computed more efficiently than in BSOLVE [1]. */ + + i__2 = *n - j; + splus += sdot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 + + j * z_dim1], &c__1); + i__2 = *n - j; + sminu = sdot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], + &c__1); + splus *= rhs[j]; + if (splus > sminu) { + rhs[j] = bp; + } else if (sminu > splus) { + rhs[j] = bm; + } else { + +/* In this case the updating sums are equal and we can */ +/* choose RHS(J) +1 or -1. The first time this happens */ +/* we choose -1, thereafter +1. This is a simple way to */ +/* get good estimates of matrices like Byers well-known */ +/* example (see [1]). (Not done in BSOLVE.) */ + + rhs[j] += pmone; + pmone = 1.f; + } + +/* Compute the remaining r.h.s. */ + + temp = -rhs[j]; + i__2 = *n - j; + saxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], + &c__1); + +/* L10: */ + } + +/* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */ +/* in BSOLVE and will hopefully give us a better estimate because */ +/* any ill-conditioning of the original matrix is transfered to U */ +/* and not to L. U(N, N) is an approximation to sigma_min(LU). */ + + i__1 = *n - 1; + scopy_(&i__1, &rhs[1], &c__1, xp, &c__1); + xp[*n - 1] = rhs[*n] + 1.f; + rhs[*n] += -1.f; + splus = 0.f; + sminu = 0.f; + for (i__ = *n; i__ >= 1; --i__) { + temp = 1.f / z__[i__ + i__ * z_dim1]; + xp[i__ - 1] *= temp; + rhs[i__] *= temp; + i__1 = *n; + for (k = i__ + 1; k <= i__1; ++k) { + xp[i__ - 1] -= xp[k - 1] * (z__[i__ + k * z_dim1] * temp); + rhs[i__] -= rhs[k] * (z__[i__ + k * z_dim1] * temp); +/* L20: */ + } + splus += (r__1 = xp[i__ - 1], dabs(r__1)); + sminu += (r__1 = rhs[i__], dabs(r__1)); +/* L30: */ + } + if (splus > sminu) { + scopy_(n, xp, &c__1, &rhs[1], &c__1); + } + +/* Apply the permutations JPIV to the computed solution (RHS) */ + + i__1 = *n - 1; + slaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1); + +/* Compute the sum of squares */ + + slassq_(n, &rhs[1], &c__1, rdscal, rdsum); + + } else { + +/* IJOB = 2, Compute approximate nullvector XM of Z */ + + sgecon_("I", n, &z__[z_offset], ldz, &c_b23, &temp, work, iwork, & + info); + scopy_(n, &work[*n], &c__1, xm, &c__1); + +/* Compute RHS */ + + i__1 = *n - 1; + slaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1); + temp = 1.f / sqrt(sdot_(n, xm, &c__1, xm, &c__1)); + sscal_(n, &temp, xm, &c__1); + scopy_(n, xm, &c__1, xp, &c__1); + saxpy_(n, &c_b23, &rhs[1], &c__1, xp, &c__1); + saxpy_(n, &c_b37, xm, &c__1, &rhs[1], &c__1); + sgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &temp); + sgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &temp); + if (sasum_(n, xp, &c__1) > sasum_(n, &rhs[1], &c__1)) { + scopy_(n, xp, &c__1, &rhs[1], &c__1); + } + +/* Compute the sum of squares */ + + slassq_(n, &rhs[1], &c__1, rdscal, rdsum); + + } + + return 0; + +/* End of SLATDF */ + +} /* slatdf_ */ |