aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slatdf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slatdf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slatdf.c')
-rw-r--r--contrib/libs/clapack/slatdf.c301
1 files changed, 301 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slatdf.c b/contrib/libs/clapack/slatdf.c
new file mode 100644
index 0000000000..3f9bbb062c
--- /dev/null
+++ b/contrib/libs/clapack/slatdf.c
@@ -0,0 +1,301 @@
+/* slatdf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static real c_b23 = 1.f;
+static real c_b37 = -1.f;
+
+/* Subroutine */ int slatdf_(integer *ijob, integer *n, real *z__, integer *
+ ldz, real *rhs, real *rdsum, real *rdscal, integer *ipiv, integer *
+ jpiv)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1, i__2;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, k;
+ real bm, bp, xm[8], xp[8];
+ integer info;
+ real temp;
+ extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
+ real work[32];
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ real pmone;
+ extern doublereal sasum_(integer *, real *, integer *);
+ real sminu;
+ integer iwork[8];
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *), saxpy_(integer *, real *, real *, integer *, real *,
+ integer *);
+ real splus;
+ extern /* Subroutine */ int sgesc2_(integer *, real *, integer *, real *,
+ integer *, integer *, real *), sgecon_(char *, integer *, real *,
+ integer *, real *, real *, real *, integer *, integer *),
+ slassq_(integer *, real *, integer *, real *, real *), slaswp_(
+ integer *, real *, integer *, integer *, integer *, integer *,
+ integer *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SLATDF uses the LU factorization of the n-by-n matrix Z computed by */
+/* SGETC2 and computes a contribution to the reciprocal Dif-estimate */
+/* by solving Z * x = b for x, and choosing the r.h.s. b such that */
+/* the norm of x is as large as possible. On entry RHS = b holds the */
+/* contribution from earlier solved sub-systems, and on return RHS = x. */
+
+/* The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q, */
+/* where P and Q are permutation matrices. L is lower triangular with */
+/* unit diagonal elements and U is upper triangular. */
+
+/* Arguments */
+/* ========= */
+
+/* IJOB (input) INTEGER */
+/* IJOB = 2: First compute an approximative null-vector e */
+/* of Z using SGECON, e is normalized and solve for */
+/* Zx = +-e - f with the sign giving the greater value */
+/* of 2-norm(x). About 5 times as expensive as Default. */
+/* IJOB .ne. 2: Local look ahead strategy where all entries of */
+/* the r.h.s. b is choosen as either +1 or -1 (Default). */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix Z. */
+
+/* Z (input) REAL array, dimension (LDZ, N) */
+/* On entry, the LU part of the factorization of the n-by-n */
+/* matrix Z computed by SGETC2: Z = P * L * U * Q */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDA >= max(1, N). */
+
+/* RHS (input/output) REAL array, dimension N. */
+/* On entry, RHS contains contributions from other subsystems. */
+/* On exit, RHS contains the solution of the subsystem with */
+/* entries acoording to the value of IJOB (see above). */
+
+/* RDSUM (input/output) REAL */
+/* On entry, the sum of squares of computed contributions to */
+/* the Dif-estimate under computation by STGSYL, where the */
+/* scaling factor RDSCAL (see below) has been factored out. */
+/* On exit, the corresponding sum of squares updated with the */
+/* contributions from the current sub-system. */
+/* If TRANS = 'T' RDSUM is not touched. */
+/* NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL. */
+
+/* RDSCAL (input/output) REAL */
+/* On entry, scaling factor used to prevent overflow in RDSUM. */
+/* On exit, RDSCAL is updated w.r.t. the current contributions */
+/* in RDSUM. */
+/* If TRANS = 'T', RDSCAL is not touched. */
+/* NOTE: RDSCAL only makes sense when STGSY2 is called by */
+/* STGSYL. */
+
+/* IPIV (input) INTEGER array, dimension (N). */
+/* The pivot indices; for 1 <= i <= N, row i of the */
+/* matrix has been interchanged with row IPIV(i). */
+
+/* JPIV (input) INTEGER array, dimension (N). */
+/* The pivot indices; for 1 <= j <= N, column j of the */
+/* matrix has been interchanged with column JPIV(j). */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* This routine is a further developed implementation of algorithm */
+/* BSOLVE in [1] using complete pivoting in the LU factorization. */
+
+/* [1] Bo Kagstrom and Lars Westin, */
+/* Generalized Schur Methods with Condition Estimators for */
+/* Solving the Generalized Sylvester Equation, IEEE Transactions */
+/* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
+
+/* [2] Peter Poromaa, */
+/* On Efficient and Robust Estimators for the Separation */
+/* between two Regular Matrix Pairs with Applications in */
+/* Condition Estimation. Report IMINF-95.05, Departement of */
+/* Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --rhs;
+ --ipiv;
+ --jpiv;
+
+ /* Function Body */
+ if (*ijob != 2) {
+
+/* Apply permutations IPIV to RHS */
+
+ i__1 = *n - 1;
+ slaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);
+
+/* Solve for L-part choosing RHS either to +1 or -1. */
+
+ pmone = -1.f;
+
+ i__1 = *n - 1;
+ for (j = 1; j <= i__1; ++j) {
+ bp = rhs[j] + 1.f;
+ bm = rhs[j] - 1.f;
+ splus = 1.f;
+
+/* Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */
+/* SMIN computed more efficiently than in BSOLVE [1]. */
+
+ i__2 = *n - j;
+ splus += sdot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1
+ + j * z_dim1], &c__1);
+ i__2 = *n - j;
+ sminu = sdot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
+ &c__1);
+ splus *= rhs[j];
+ if (splus > sminu) {
+ rhs[j] = bp;
+ } else if (sminu > splus) {
+ rhs[j] = bm;
+ } else {
+
+/* In this case the updating sums are equal and we can */
+/* choose RHS(J) +1 or -1. The first time this happens */
+/* we choose -1, thereafter +1. This is a simple way to */
+/* get good estimates of matrices like Byers well-known */
+/* example (see [1]). (Not done in BSOLVE.) */
+
+ rhs[j] += pmone;
+ pmone = 1.f;
+ }
+
+/* Compute the remaining r.h.s. */
+
+ temp = -rhs[j];
+ i__2 = *n - j;
+ saxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
+ &c__1);
+
+/* L10: */
+ }
+
+/* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */
+/* in BSOLVE and will hopefully give us a better estimate because */
+/* any ill-conditioning of the original matrix is transfered to U */
+/* and not to L. U(N, N) is an approximation to sigma_min(LU). */
+
+ i__1 = *n - 1;
+ scopy_(&i__1, &rhs[1], &c__1, xp, &c__1);
+ xp[*n - 1] = rhs[*n] + 1.f;
+ rhs[*n] += -1.f;
+ splus = 0.f;
+ sminu = 0.f;
+ for (i__ = *n; i__ >= 1; --i__) {
+ temp = 1.f / z__[i__ + i__ * z_dim1];
+ xp[i__ - 1] *= temp;
+ rhs[i__] *= temp;
+ i__1 = *n;
+ for (k = i__ + 1; k <= i__1; ++k) {
+ xp[i__ - 1] -= xp[k - 1] * (z__[i__ + k * z_dim1] * temp);
+ rhs[i__] -= rhs[k] * (z__[i__ + k * z_dim1] * temp);
+/* L20: */
+ }
+ splus += (r__1 = xp[i__ - 1], dabs(r__1));
+ sminu += (r__1 = rhs[i__], dabs(r__1));
+/* L30: */
+ }
+ if (splus > sminu) {
+ scopy_(n, xp, &c__1, &rhs[1], &c__1);
+ }
+
+/* Apply the permutations JPIV to the computed solution (RHS) */
+
+ i__1 = *n - 1;
+ slaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);
+
+/* Compute the sum of squares */
+
+ slassq_(n, &rhs[1], &c__1, rdscal, rdsum);
+
+ } else {
+
+/* IJOB = 2, Compute approximate nullvector XM of Z */
+
+ sgecon_("I", n, &z__[z_offset], ldz, &c_b23, &temp, work, iwork, &
+ info);
+ scopy_(n, &work[*n], &c__1, xm, &c__1);
+
+/* Compute RHS */
+
+ i__1 = *n - 1;
+ slaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
+ temp = 1.f / sqrt(sdot_(n, xm, &c__1, xm, &c__1));
+ sscal_(n, &temp, xm, &c__1);
+ scopy_(n, xm, &c__1, xp, &c__1);
+ saxpy_(n, &c_b23, &rhs[1], &c__1, xp, &c__1);
+ saxpy_(n, &c_b37, xm, &c__1, &rhs[1], &c__1);
+ sgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &temp);
+ sgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &temp);
+ if (sasum_(n, xp, &c__1) > sasum_(n, &rhs[1], &c__1)) {
+ scopy_(n, xp, &c__1, &rhs[1], &c__1);
+ }
+
+/* Compute the sum of squares */
+
+ slassq_(n, &rhs[1], &c__1, rdscal, rdsum);
+
+ }
+
+ return 0;
+
+/* End of SLATDF */
+
+} /* slatdf_ */