aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slatbs.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slatbs.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slatbs.c')
-rw-r--r--contrib/libs/clapack/slatbs.c849
1 files changed, 849 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slatbs.c b/contrib/libs/clapack/slatbs.c
new file mode 100644
index 0000000000..9a3e867a71
--- /dev/null
+++ b/contrib/libs/clapack/slatbs.c
@@ -0,0 +1,849 @@
+/* slatbs.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static real c_b36 = .5f;
+
+/* Subroutine */ int slatbs_(char *uplo, char *trans, char *diag, char *
+ normin, integer *n, integer *kd, real *ab, integer *ldab, real *x,
+ real *scale, real *cnorm, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
+ real r__1, r__2, r__3;
+
+ /* Local variables */
+ integer i__, j;
+ real xj, rec, tjj;
+ integer jinc, jlen;
+ real xbnd;
+ integer imax;
+ real tmax, tjjs;
+ extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
+ real xmax, grow, sumj;
+ integer maind;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ real tscal, uscal;
+ integer jlast;
+ extern doublereal sasum_(integer *, real *, integer *);
+ logical upper;
+ extern /* Subroutine */ int stbsv_(char *, char *, char *, integer *,
+ integer *, real *, integer *, real *, integer *), saxpy_(integer *, real *, real *, integer *, real *,
+ integer *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum;
+ extern integer isamax_(integer *, real *, integer *);
+ logical notran;
+ integer jfirst;
+ real smlnum;
+ logical nounit;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SLATBS solves one of the triangular systems */
+
+/* A *x = s*b or A'*x = s*b */
+
+/* with scaling to prevent overflow, where A is an upper or lower */
+/* triangular band matrix. Here A' denotes the transpose of A, x and b */
+/* are n-element vectors, and s is a scaling factor, usually less than */
+/* or equal to 1, chosen so that the components of x will be less than */
+/* the overflow threshold. If the unscaled problem will not cause */
+/* overflow, the Level 2 BLAS routine STBSV is called. If the matrix A */
+/* is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
+/* non-trivial solution to A*x = 0 is returned. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the matrix A is upper or lower triangular. */
+/* = 'U': Upper triangular */
+/* = 'L': Lower triangular */
+
+/* TRANS (input) CHARACTER*1 */
+/* Specifies the operation applied to A. */
+/* = 'N': Solve A * x = s*b (No transpose) */
+/* = 'T': Solve A'* x = s*b (Transpose) */
+/* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose) */
+
+/* DIAG (input) CHARACTER*1 */
+/* Specifies whether or not the matrix A is unit triangular. */
+/* = 'N': Non-unit triangular */
+/* = 'U': Unit triangular */
+
+/* NORMIN (input) CHARACTER*1 */
+/* Specifies whether CNORM has been set or not. */
+/* = 'Y': CNORM contains the column norms on entry */
+/* = 'N': CNORM is not set on entry. On exit, the norms will */
+/* be computed and stored in CNORM. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of subdiagonals or superdiagonals in the */
+/* triangular matrix A. KD >= 0. */
+
+/* AB (input) REAL array, dimension (LDAB,N) */
+/* The upper or lower triangular band matrix A, stored in the */
+/* first KD+1 rows of the array. The j-th column of A is stored */
+/* in the j-th column of the array AB as follows: */
+/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD+1. */
+
+/* X (input/output) REAL array, dimension (N) */
+/* On entry, the right hand side b of the triangular system. */
+/* On exit, X is overwritten by the solution vector x. */
+
+/* SCALE (output) REAL */
+/* The scaling factor s for the triangular system */
+/* A * x = s*b or A'* x = s*b. */
+/* If SCALE = 0, the matrix A is singular or badly scaled, and */
+/* the vector x is an exact or approximate solution to A*x = 0. */
+
+/* CNORM (input or output) REAL array, dimension (N) */
+
+/* If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
+/* contains the norm of the off-diagonal part of the j-th column */
+/* of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
+/* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
+/* must be greater than or equal to the 1-norm. */
+
+/* If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
+/* returns the 1-norm of the offdiagonal part of the j-th column */
+/* of A. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -k, the k-th argument had an illegal value */
+
+/* Further Details */
+/* ======= ======= */
+
+/* A rough bound on x is computed; if that is less than overflow, STBSV */
+/* is called, otherwise, specific code is used which checks for possible */
+/* overflow or divide-by-zero at every operation. */
+
+/* A columnwise scheme is used for solving A*x = b. The basic algorithm */
+/* if A is lower triangular is */
+
+/* x[1:n] := b[1:n] */
+/* for j = 1, ..., n */
+/* x(j) := x(j) / A(j,j) */
+/* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
+/* end */
+
+/* Define bounds on the components of x after j iterations of the loop: */
+/* M(j) = bound on x[1:j] */
+/* G(j) = bound on x[j+1:n] */
+/* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. */
+
+/* Then for iteration j+1 we have */
+/* M(j+1) <= G(j) / | A(j+1,j+1) | */
+/* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
+/* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
+
+/* where CNORM(j+1) is greater than or equal to the infinity-norm of */
+/* column j+1 of A, not counting the diagonal. Hence */
+
+/* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
+/* 1<=i<=j */
+/* and */
+
+/* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
+/* 1<=i< j */
+
+/* Since |x(j)| <= M(j), we use the Level 2 BLAS routine STBSV if the */
+/* reciprocal of the largest M(j), j=1,..,n, is larger than */
+/* max(underflow, 1/overflow). */
+
+/* The bound on x(j) is also used to determine when a step in the */
+/* columnwise method can be performed without fear of overflow. If */
+/* the computed bound is greater than a large constant, x is scaled to */
+/* prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
+/* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
+
+/* Similarly, a row-wise scheme is used to solve A'*x = b. The basic */
+/* algorithm for A upper triangular is */
+
+/* for j = 1, ..., n */
+/* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
+/* end */
+
+/* We simultaneously compute two bounds */
+/* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
+/* M(j) = bound on x(i), 1<=i<=j */
+
+/* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we */
+/* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
+/* Then the bound on x(j) is */
+
+/* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
+
+/* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
+/* 1<=i<=j */
+
+/* and we can safely call STBSV if 1/M(n) and 1/G(n) are both greater */
+/* than max(underflow, 1/overflow). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --x;
+ --cnorm;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ notran = lsame_(trans, "N");
+ nounit = lsame_(diag, "N");
+
+/* Test the input parameters. */
+
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (! notran && ! lsame_(trans, "T") && !
+ lsame_(trans, "C")) {
+ *info = -2;
+ } else if (! nounit && ! lsame_(diag, "U")) {
+ *info = -3;
+ } else if (! lsame_(normin, "Y") && ! lsame_(normin,
+ "N")) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*kd < 0) {
+ *info = -6;
+ } else if (*ldab < *kd + 1) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SLATBS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Determine machine dependent parameters to control overflow. */
+
+ smlnum = slamch_("Safe minimum") / slamch_("Precision");
+ bignum = 1.f / smlnum;
+ *scale = 1.f;
+
+ if (lsame_(normin, "N")) {
+
+/* Compute the 1-norm of each column, not including the diagonal. */
+
+ if (upper) {
+
+/* A is upper triangular. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__2 = *kd, i__3 = j - 1;
+ jlen = min(i__2,i__3);
+ cnorm[j] = sasum_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1], &
+ c__1);
+/* L10: */
+ }
+ } else {
+
+/* A is lower triangular. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__2 = *kd, i__3 = *n - j;
+ jlen = min(i__2,i__3);
+ if (jlen > 0) {
+ cnorm[j] = sasum_(&jlen, &ab[j * ab_dim1 + 2], &c__1);
+ } else {
+ cnorm[j] = 0.f;
+ }
+/* L20: */
+ }
+ }
+ }
+
+/* Scale the column norms by TSCAL if the maximum element in CNORM is */
+/* greater than BIGNUM. */
+
+ imax = isamax_(n, &cnorm[1], &c__1);
+ tmax = cnorm[imax];
+ if (tmax <= bignum) {
+ tscal = 1.f;
+ } else {
+ tscal = 1.f / (smlnum * tmax);
+ sscal_(n, &tscal, &cnorm[1], &c__1);
+ }
+
+/* Compute a bound on the computed solution vector to see if the */
+/* Level 2 BLAS routine STBSV can be used. */
+
+ j = isamax_(n, &x[1], &c__1);
+ xmax = (r__1 = x[j], dabs(r__1));
+ xbnd = xmax;
+ if (notran) {
+
+/* Compute the growth in A * x = b. */
+
+ if (upper) {
+ jfirst = *n;
+ jlast = 1;
+ jinc = -1;
+ maind = *kd + 1;
+ } else {
+ jfirst = 1;
+ jlast = *n;
+ jinc = 1;
+ maind = 1;
+ }
+
+ if (tscal != 1.f) {
+ grow = 0.f;
+ goto L50;
+ }
+
+ if (nounit) {
+
+/* A is non-unit triangular. */
+
+/* Compute GROW = 1/G(j) and XBND = 1/M(j). */
+/* Initially, G(0) = max{x(i), i=1,...,n}. */
+
+ grow = 1.f / dmax(xbnd,smlnum);
+ xbnd = grow;
+ i__1 = jlast;
+ i__2 = jinc;
+ for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
+
+/* Exit the loop if the growth factor is too small. */
+
+ if (grow <= smlnum) {
+ goto L50;
+ }
+
+/* M(j) = G(j-1) / abs(A(j,j)) */
+
+ tjj = (r__1 = ab[maind + j * ab_dim1], dabs(r__1));
+/* Computing MIN */
+ r__1 = xbnd, r__2 = dmin(1.f,tjj) * grow;
+ xbnd = dmin(r__1,r__2);
+ if (tjj + cnorm[j] >= smlnum) {
+
+/* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
+
+ grow *= tjj / (tjj + cnorm[j]);
+ } else {
+
+/* G(j) could overflow, set GROW to 0. */
+
+ grow = 0.f;
+ }
+/* L30: */
+ }
+ grow = xbnd;
+ } else {
+
+/* A is unit triangular. */
+
+/* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
+
+/* Computing MIN */
+ r__1 = 1.f, r__2 = 1.f / dmax(xbnd,smlnum);
+ grow = dmin(r__1,r__2);
+ i__2 = jlast;
+ i__1 = jinc;
+ for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
+
+/* Exit the loop if the growth factor is too small. */
+
+ if (grow <= smlnum) {
+ goto L50;
+ }
+
+/* G(j) = G(j-1)*( 1 + CNORM(j) ) */
+
+ grow *= 1.f / (cnorm[j] + 1.f);
+/* L40: */
+ }
+ }
+L50:
+
+ ;
+ } else {
+
+/* Compute the growth in A' * x = b. */
+
+ if (upper) {
+ jfirst = 1;
+ jlast = *n;
+ jinc = 1;
+ maind = *kd + 1;
+ } else {
+ jfirst = *n;
+ jlast = 1;
+ jinc = -1;
+ maind = 1;
+ }
+
+ if (tscal != 1.f) {
+ grow = 0.f;
+ goto L80;
+ }
+
+ if (nounit) {
+
+/* A is non-unit triangular. */
+
+/* Compute GROW = 1/G(j) and XBND = 1/M(j). */
+/* Initially, M(0) = max{x(i), i=1,...,n}. */
+
+ grow = 1.f / dmax(xbnd,smlnum);
+ xbnd = grow;
+ i__1 = jlast;
+ i__2 = jinc;
+ for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
+
+/* Exit the loop if the growth factor is too small. */
+
+ if (grow <= smlnum) {
+ goto L80;
+ }
+
+/* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
+
+ xj = cnorm[j] + 1.f;
+/* Computing MIN */
+ r__1 = grow, r__2 = xbnd / xj;
+ grow = dmin(r__1,r__2);
+
+/* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
+
+ tjj = (r__1 = ab[maind + j * ab_dim1], dabs(r__1));
+ if (xj > tjj) {
+ xbnd *= tjj / xj;
+ }
+/* L60: */
+ }
+ grow = dmin(grow,xbnd);
+ } else {
+
+/* A is unit triangular. */
+
+/* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
+
+/* Computing MIN */
+ r__1 = 1.f, r__2 = 1.f / dmax(xbnd,smlnum);
+ grow = dmin(r__1,r__2);
+ i__2 = jlast;
+ i__1 = jinc;
+ for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
+
+/* Exit the loop if the growth factor is too small. */
+
+ if (grow <= smlnum) {
+ goto L80;
+ }
+
+/* G(j) = ( 1 + CNORM(j) )*G(j-1) */
+
+ xj = cnorm[j] + 1.f;
+ grow /= xj;
+/* L70: */
+ }
+ }
+L80:
+ ;
+ }
+
+ if (grow * tscal > smlnum) {
+
+/* Use the Level 2 BLAS solve if the reciprocal of the bound on */
+/* elements of X is not too small. */
+
+ stbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &x[1], &c__1);
+ } else {
+
+/* Use a Level 1 BLAS solve, scaling intermediate results. */
+
+ if (xmax > bignum) {
+
+/* Scale X so that its components are less than or equal to */
+/* BIGNUM in absolute value. */
+
+ *scale = bignum / xmax;
+ sscal_(n, scale, &x[1], &c__1);
+ xmax = bignum;
+ }
+
+ if (notran) {
+
+/* Solve A * x = b */
+
+ i__1 = jlast;
+ i__2 = jinc;
+ for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
+
+/* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
+
+ xj = (r__1 = x[j], dabs(r__1));
+ if (nounit) {
+ tjjs = ab[maind + j * ab_dim1] * tscal;
+ } else {
+ tjjs = tscal;
+ if (tscal == 1.f) {
+ goto L95;
+ }
+ }
+ tjj = dabs(tjjs);
+ if (tjj > smlnum) {
+
+/* abs(A(j,j)) > SMLNUM: */
+
+ if (tjj < 1.f) {
+ if (xj > tjj * bignum) {
+
+/* Scale x by 1/b(j). */
+
+ rec = 1.f / xj;
+ sscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+ x[j] /= tjjs;
+ xj = (r__1 = x[j], dabs(r__1));
+ } else if (tjj > 0.f) {
+
+/* 0 < abs(A(j,j)) <= SMLNUM: */
+
+ if (xj > tjj * bignum) {
+
+/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
+/* to avoid overflow when dividing by A(j,j). */
+
+ rec = tjj * bignum / xj;
+ if (cnorm[j] > 1.f) {
+
+/* Scale by 1/CNORM(j) to avoid overflow when */
+/* multiplying x(j) times column j. */
+
+ rec /= cnorm[j];
+ }
+ sscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ x[j] /= tjjs;
+ xj = (r__1 = x[j], dabs(r__1));
+ } else {
+
+/* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
+/* scale = 0, and compute a solution to A*x = 0. */
+
+ i__3 = *n;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ x[i__] = 0.f;
+/* L90: */
+ }
+ x[j] = 1.f;
+ xj = 1.f;
+ *scale = 0.f;
+ xmax = 0.f;
+ }
+L95:
+
+/* Scale x if necessary to avoid overflow when adding a */
+/* multiple of column j of A. */
+
+ if (xj > 1.f) {
+ rec = 1.f / xj;
+ if (cnorm[j] > (bignum - xmax) * rec) {
+
+/* Scale x by 1/(2*abs(x(j))). */
+
+ rec *= .5f;
+ sscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ }
+ } else if (xj * cnorm[j] > bignum - xmax) {
+
+/* Scale x by 1/2. */
+
+ sscal_(n, &c_b36, &x[1], &c__1);
+ *scale *= .5f;
+ }
+
+ if (upper) {
+ if (j > 1) {
+
+/* Compute the update */
+/* x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) - */
+/* x(j)* A(max(1,j-kd):j-1,j) */
+
+/* Computing MIN */
+ i__3 = *kd, i__4 = j - 1;
+ jlen = min(i__3,i__4);
+ r__1 = -x[j] * tscal;
+ saxpy_(&jlen, &r__1, &ab[*kd + 1 - jlen + j * ab_dim1]
+, &c__1, &x[j - jlen], &c__1);
+ i__3 = j - 1;
+ i__ = isamax_(&i__3, &x[1], &c__1);
+ xmax = (r__1 = x[i__], dabs(r__1));
+ }
+ } else if (j < *n) {
+
+/* Compute the update */
+/* x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) - */
+/* x(j) * A(j+1:min(j+kd,n),j) */
+
+/* Computing MIN */
+ i__3 = *kd, i__4 = *n - j;
+ jlen = min(i__3,i__4);
+ if (jlen > 0) {
+ r__1 = -x[j] * tscal;
+ saxpy_(&jlen, &r__1, &ab[j * ab_dim1 + 2], &c__1, &x[
+ j + 1], &c__1);
+ }
+ i__3 = *n - j;
+ i__ = j + isamax_(&i__3, &x[j + 1], &c__1);
+ xmax = (r__1 = x[i__], dabs(r__1));
+ }
+/* L100: */
+ }
+
+ } else {
+
+/* Solve A' * x = b */
+
+ i__2 = jlast;
+ i__1 = jinc;
+ for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
+
+/* Compute x(j) = b(j) - sum A(k,j)*x(k). */
+/* k<>j */
+
+ xj = (r__1 = x[j], dabs(r__1));
+ uscal = tscal;
+ rec = 1.f / dmax(xmax,1.f);
+ if (cnorm[j] > (bignum - xj) * rec) {
+
+/* If x(j) could overflow, scale x by 1/(2*XMAX). */
+
+ rec *= .5f;
+ if (nounit) {
+ tjjs = ab[maind + j * ab_dim1] * tscal;
+ } else {
+ tjjs = tscal;
+ }
+ tjj = dabs(tjjs);
+ if (tjj > 1.f) {
+
+/* Divide by A(j,j) when scaling x if A(j,j) > 1. */
+
+/* Computing MIN */
+ r__1 = 1.f, r__2 = rec * tjj;
+ rec = dmin(r__1,r__2);
+ uscal /= tjjs;
+ }
+ if (rec < 1.f) {
+ sscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+
+ sumj = 0.f;
+ if (uscal == 1.f) {
+
+/* If the scaling needed for A in the dot product is 1, */
+/* call SDOT to perform the dot product. */
+
+ if (upper) {
+/* Computing MIN */
+ i__3 = *kd, i__4 = j - 1;
+ jlen = min(i__3,i__4);
+ sumj = sdot_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1],
+ &c__1, &x[j - jlen], &c__1);
+ } else {
+/* Computing MIN */
+ i__3 = *kd, i__4 = *n - j;
+ jlen = min(i__3,i__4);
+ if (jlen > 0) {
+ sumj = sdot_(&jlen, &ab[j * ab_dim1 + 2], &c__1, &
+ x[j + 1], &c__1);
+ }
+ }
+ } else {
+
+/* Otherwise, use in-line code for the dot product. */
+
+ if (upper) {
+/* Computing MIN */
+ i__3 = *kd, i__4 = j - 1;
+ jlen = min(i__3,i__4);
+ i__3 = jlen;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ sumj += ab[*kd + i__ - jlen + j * ab_dim1] *
+ uscal * x[j - jlen - 1 + i__];
+/* L110: */
+ }
+ } else {
+/* Computing MIN */
+ i__3 = *kd, i__4 = *n - j;
+ jlen = min(i__3,i__4);
+ i__3 = jlen;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ sumj += ab[i__ + 1 + j * ab_dim1] * uscal * x[j +
+ i__];
+/* L120: */
+ }
+ }
+ }
+
+ if (uscal == tscal) {
+
+/* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j) */
+/* was not used to scale the dotproduct. */
+
+ x[j] -= sumj;
+ xj = (r__1 = x[j], dabs(r__1));
+ if (nounit) {
+
+/* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
+
+ tjjs = ab[maind + j * ab_dim1] * tscal;
+ } else {
+ tjjs = tscal;
+ if (tscal == 1.f) {
+ goto L135;
+ }
+ }
+ tjj = dabs(tjjs);
+ if (tjj > smlnum) {
+
+/* abs(A(j,j)) > SMLNUM: */
+
+ if (tjj < 1.f) {
+ if (xj > tjj * bignum) {
+
+/* Scale X by 1/abs(x(j)). */
+
+ rec = 1.f / xj;
+ sscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+ x[j] /= tjjs;
+ } else if (tjj > 0.f) {
+
+/* 0 < abs(A(j,j)) <= SMLNUM: */
+
+ if (xj > tjj * bignum) {
+
+/* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
+
+ rec = tjj * bignum / xj;
+ sscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ x[j] /= tjjs;
+ } else {
+
+/* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
+/* scale = 0, and compute a solution to A'*x = 0. */
+
+ i__3 = *n;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ x[i__] = 0.f;
+/* L130: */
+ }
+ x[j] = 1.f;
+ *scale = 0.f;
+ xmax = 0.f;
+ }
+L135:
+ ;
+ } else {
+
+/* Compute x(j) := x(j) / A(j,j) - sumj if the dot */
+/* product has already been divided by 1/A(j,j). */
+
+ x[j] = x[j] / tjjs - sumj;
+ }
+/* Computing MAX */
+ r__2 = xmax, r__3 = (r__1 = x[j], dabs(r__1));
+ xmax = dmax(r__2,r__3);
+/* L140: */
+ }
+ }
+ *scale /= tscal;
+ }
+
+/* Scale the column norms by 1/TSCAL for return. */
+
+ if (tscal != 1.f) {
+ r__1 = 1.f / tscal;
+ sscal_(n, &r__1, &cnorm[1], &c__1);
+ }
+
+ return 0;
+
+/* End of SLATBS */
+
+} /* slatbs_ */