aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slasdq.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slasdq.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slasdq.c')
-rw-r--r--contrib/libs/clapack/slasdq.c379
1 files changed, 379 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slasdq.c b/contrib/libs/clapack/slasdq.c
new file mode 100644
index 0000000000..fae6a16b6a
--- /dev/null
+++ b/contrib/libs/clapack/slasdq.c
@@ -0,0 +1,379 @@
+/* slasdq.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int slasdq_(char *uplo, integer *sqre, integer *n, integer *
+ ncvt, integer *nru, integer *ncc, real *d__, real *e, real *vt,
+ integer *ldvt, real *u, integer *ldu, real *c__, integer *ldc, real *
+ work, integer *info)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
+ i__2;
+
+ /* Local variables */
+ integer i__, j;
+ real r__, cs, sn;
+ integer np1, isub;
+ real smin;
+ integer sqre1;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int slasr_(char *, char *, char *, integer *,
+ integer *, real *, real *, real *, integer *);
+ integer iuplo;
+ extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
+ integer *), xerbla_(char *, integer *), slartg_(real *,
+ real *, real *, real *, real *);
+ logical rotate;
+ extern /* Subroutine */ int sbdsqr_(char *, integer *, integer *, integer
+ *, integer *, real *, real *, real *, integer *, real *, integer *
+, real *, integer *, real *, integer *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SLASDQ computes the singular value decomposition (SVD) of a real */
+/* (upper or lower) bidiagonal matrix with diagonal D and offdiagonal */
+/* E, accumulating the transformations if desired. Letting B denote */
+/* the input bidiagonal matrix, the algorithm computes orthogonal */
+/* matrices Q and P such that B = Q * S * P' (P' denotes the transpose */
+/* of P). The singular values S are overwritten on D. */
+
+/* The input matrix U is changed to U * Q if desired. */
+/* The input matrix VT is changed to P' * VT if desired. */
+/* The input matrix C is changed to Q' * C if desired. */
+
+/* See "Computing Small Singular Values of Bidiagonal Matrices With */
+/* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
+/* LAPACK Working Note #3, for a detailed description of the algorithm. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* On entry, UPLO specifies whether the input bidiagonal matrix */
+/* is upper or lower bidiagonal, and wether it is square are */
+/* not. */
+/* UPLO = 'U' or 'u' B is upper bidiagonal. */
+/* UPLO = 'L' or 'l' B is lower bidiagonal. */
+
+/* SQRE (input) INTEGER */
+/* = 0: then the input matrix is N-by-N. */
+/* = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and */
+/* (N+1)-by-N if UPLU = 'L'. */
+
+/* The bidiagonal matrix has */
+/* N = NL + NR + 1 rows and */
+/* M = N + SQRE >= N columns. */
+
+/* N (input) INTEGER */
+/* On entry, N specifies the number of rows and columns */
+/* in the matrix. N must be at least 0. */
+
+/* NCVT (input) INTEGER */
+/* On entry, NCVT specifies the number of columns of */
+/* the matrix VT. NCVT must be at least 0. */
+
+/* NRU (input) INTEGER */
+/* On entry, NRU specifies the number of rows of */
+/* the matrix U. NRU must be at least 0. */
+
+/* NCC (input) INTEGER */
+/* On entry, NCC specifies the number of columns of */
+/* the matrix C. NCC must be at least 0. */
+
+/* D (input/output) REAL array, dimension (N) */
+/* On entry, D contains the diagonal entries of the */
+/* bidiagonal matrix whose SVD is desired. On normal exit, */
+/* D contains the singular values in ascending order. */
+
+/* E (input/output) REAL array. */
+/* dimension is (N-1) if SQRE = 0 and N if SQRE = 1. */
+/* On entry, the entries of E contain the offdiagonal entries */
+/* of the bidiagonal matrix whose SVD is desired. On normal */
+/* exit, E will contain 0. If the algorithm does not converge, */
+/* D and E will contain the diagonal and superdiagonal entries */
+/* of a bidiagonal matrix orthogonally equivalent to the one */
+/* given as input. */
+
+/* VT (input/output) REAL array, dimension (LDVT, NCVT) */
+/* On entry, contains a matrix which on exit has been */
+/* premultiplied by P', dimension N-by-NCVT if SQRE = 0 */
+/* and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). */
+
+/* LDVT (input) INTEGER */
+/* On entry, LDVT specifies the leading dimension of VT as */
+/* declared in the calling (sub) program. LDVT must be at */
+/* least 1. If NCVT is nonzero LDVT must also be at least N. */
+
+/* U (input/output) REAL array, dimension (LDU, N) */
+/* On entry, contains a matrix which on exit has been */
+/* postmultiplied by Q, dimension NRU-by-N if SQRE = 0 */
+/* and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). */
+
+/* LDU (input) INTEGER */
+/* On entry, LDU specifies the leading dimension of U as */
+/* declared in the calling (sub) program. LDU must be at */
+/* least max( 1, NRU ) . */
+
+/* C (input/output) REAL array, dimension (LDC, NCC) */
+/* On entry, contains an N-by-NCC matrix which on exit */
+/* has been premultiplied by Q' dimension N-by-NCC if SQRE = 0 */
+/* and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). */
+
+/* LDC (input) INTEGER */
+/* On entry, LDC specifies the leading dimension of C as */
+/* declared in the calling (sub) program. LDC must be at */
+/* least 1. If NCC is nonzero, LDC must also be at least N. */
+
+/* WORK (workspace) REAL array, dimension (4*N) */
+/* Workspace. Only referenced if one of NCVT, NRU, or NCC is */
+/* nonzero, and if N is at least 2. */
+
+/* INFO (output) INTEGER */
+/* On exit, a value of 0 indicates a successful exit. */
+/* If INFO < 0, argument number -INFO is illegal. */
+/* If INFO > 0, the algorithm did not converge, and INFO */
+/* specifies how many superdiagonals did not converge. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Ming Gu and Huan Ren, Computer Science Division, University of */
+/* California at Berkeley, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1;
+ vt -= vt_offset;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1;
+ u -= u_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ iuplo = 0;
+ if (lsame_(uplo, "U")) {
+ iuplo = 1;
+ }
+ if (lsame_(uplo, "L")) {
+ iuplo = 2;
+ }
+ if (iuplo == 0) {
+ *info = -1;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ncvt < 0) {
+ *info = -4;
+ } else if (*nru < 0) {
+ *info = -5;
+ } else if (*ncc < 0) {
+ *info = -6;
+ } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
+ *info = -10;
+ } else if (*ldu < max(1,*nru)) {
+ *info = -12;
+ } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
+ *info = -14;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SLASDQ", &i__1);
+ return 0;
+ }
+ if (*n == 0) {
+ return 0;
+ }
+
+/* ROTATE is true if any singular vectors desired, false otherwise */
+
+ rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
+ np1 = *n + 1;
+ sqre1 = *sqre;
+
+/* If matrix non-square upper bidiagonal, rotate to be lower */
+/* bidiagonal. The rotations are on the right. */
+
+ if (iuplo == 1 && sqre1 == 1) {
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ if (rotate) {
+ work[i__] = cs;
+ work[*n + i__] = sn;
+ }
+/* L10: */
+ }
+ slartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
+ d__[*n] = r__;
+ e[*n] = 0.f;
+ if (rotate) {
+ work[*n] = cs;
+ work[*n + *n] = sn;
+ }
+ iuplo = 2;
+ sqre1 = 0;
+
+/* Update singular vectors if desired. */
+
+ if (*ncvt > 0) {
+ slasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
+ vt_offset], ldvt);
+ }
+ }
+
+/* If matrix lower bidiagonal, rotate to be upper bidiagonal */
+/* by applying Givens rotations on the left. */
+
+ if (iuplo == 2) {
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ if (rotate) {
+ work[i__] = cs;
+ work[*n + i__] = sn;
+ }
+/* L20: */
+ }
+
+/* If matrix (N+1)-by-N lower bidiagonal, one additional */
+/* rotation is needed. */
+
+ if (sqre1 == 1) {
+ slartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
+ d__[*n] = r__;
+ if (rotate) {
+ work[*n] = cs;
+ work[*n + *n] = sn;
+ }
+ }
+
+/* Update singular vectors if desired. */
+
+ if (*nru > 0) {
+ if (sqre1 == 0) {
+ slasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
+ u_offset], ldu);
+ } else {
+ slasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
+ u_offset], ldu);
+ }
+ }
+ if (*ncc > 0) {
+ if (sqre1 == 0) {
+ slasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
+ c_offset], ldc);
+ } else {
+ slasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
+ c_offset], ldc);
+ }
+ }
+ }
+
+/* Call SBDSQR to compute the SVD of the reduced real */
+/* N-by-N upper bidiagonal matrix. */
+
+ sbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
+ u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
+
+/* Sort the singular values into ascending order (insertion sort on */
+/* singular values, but only one transposition per singular vector) */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Scan for smallest D(I). */
+
+ isub = i__;
+ smin = d__[i__];
+ i__2 = *n;
+ for (j = i__ + 1; j <= i__2; ++j) {
+ if (d__[j] < smin) {
+ isub = j;
+ smin = d__[j];
+ }
+/* L30: */
+ }
+ if (isub != i__) {
+
+/* Swap singular values and vectors. */
+
+ d__[isub] = d__[i__];
+ d__[i__] = smin;
+ if (*ncvt > 0) {
+ sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1],
+ ldvt);
+ }
+ if (*nru > 0) {
+ sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
+, &c__1);
+ }
+ if (*ncc > 0) {
+ sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
+ ;
+ }
+ }
+/* L40: */
+ }
+
+ return 0;
+
+/* End of SLASDQ */
+
+} /* slasdq_ */