aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slasd4.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slasd4.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slasd4.c')
-rw-r--r--contrib/libs/clapack/slasd4.c1010
1 files changed, 1010 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slasd4.c b/contrib/libs/clapack/slasd4.c
new file mode 100644
index 0000000000..11ba6d23c6
--- /dev/null
+++ b/contrib/libs/clapack/slasd4.c
@@ -0,0 +1,1010 @@
+/* slasd4.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int slasd4_(integer *n, integer *i__, real *d__, real *z__,
+ real *delta, real *rho, real *sigma, real *work, integer *info)
+{
+ /* System generated locals */
+ integer i__1;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ real a, b, c__;
+ integer j;
+ real w, dd[3];
+ integer ii;
+ real dw, zz[3];
+ integer ip1;
+ real eta, phi, eps, tau, psi;
+ integer iim1, iip1;
+ real dphi, dpsi;
+ integer iter;
+ real temp, prew, sg2lb, sg2ub, temp1, temp2, dtiim, delsq, dtiip;
+ integer niter;
+ real dtisq;
+ logical swtch;
+ real dtnsq;
+ extern /* Subroutine */ int slaed6_(integer *, logical *, real *, real *,
+ real *, real *, real *, integer *);
+ real delsq2;
+ extern /* Subroutine */ int slasd5_(integer *, real *, real *, real *,
+ real *, real *, real *);
+ real dtnsq1;
+ logical swtch3;
+ extern doublereal slamch_(char *);
+ logical orgati;
+ real erretm, dtipsq, rhoinv;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* This subroutine computes the square root of the I-th updated */
+/* eigenvalue of a positive symmetric rank-one modification to */
+/* a positive diagonal matrix whose entries are given as the squares */
+/* of the corresponding entries in the array d, and that */
+
+/* 0 <= D(i) < D(j) for i < j */
+
+/* and that RHO > 0. This is arranged by the calling routine, and is */
+/* no loss in generality. The rank-one modified system is thus */
+
+/* diag( D ) * diag( D ) + RHO * Z * Z_transpose. */
+
+/* where we assume the Euclidean norm of Z is 1. */
+
+/* The method consists of approximating the rational functions in the */
+/* secular equation by simpler interpolating rational functions. */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The length of all arrays. */
+
+/* I (input) INTEGER */
+/* The index of the eigenvalue to be computed. 1 <= I <= N. */
+
+/* D (input) REAL array, dimension ( N ) */
+/* The original eigenvalues. It is assumed that they are in */
+/* order, 0 <= D(I) < D(J) for I < J. */
+
+/* Z (input) REAL array, dimension (N) */
+/* The components of the updating vector. */
+
+/* DELTA (output) REAL array, dimension (N) */
+/* If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th */
+/* component. If N = 1, then DELTA(1) = 1. The vector DELTA */
+/* contains the information necessary to construct the */
+/* (singular) eigenvectors. */
+
+/* RHO (input) REAL */
+/* The scalar in the symmetric updating formula. */
+
+/* SIGMA (output) REAL */
+/* The computed sigma_I, the I-th updated eigenvalue. */
+
+/* WORK (workspace) REAL array, dimension (N) */
+/* If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th */
+/* component. If N = 1, then WORK( 1 ) = 1. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* > 0: if INFO = 1, the updating process failed. */
+
+/* Internal Parameters */
+/* =================== */
+
+/* Logical variable ORGATI (origin-at-i?) is used for distinguishing */
+/* whether D(i) or D(i+1) is treated as the origin. */
+
+/* ORGATI = .true. origin at i */
+/* ORGATI = .false. origin at i+1 */
+
+/* Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
+/* if we are working with THREE poles! */
+
+/* MAXIT is the maximum number of iterations allowed for each */
+/* eigenvalue. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Ren-Cang Li, Computer Science Division, University of California */
+/* at Berkeley, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Since this routine is called in an inner loop, we do no argument */
+/* checking. */
+
+/* Quick return for N=1 and 2. */
+
+ /* Parameter adjustments */
+ --work;
+ --delta;
+ --z__;
+ --d__;
+
+ /* Function Body */
+ *info = 0;
+ if (*n == 1) {
+
+/* Presumably, I=1 upon entry */
+
+ *sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
+ delta[1] = 1.f;
+ work[1] = 1.f;
+ return 0;
+ }
+ if (*n == 2) {
+ slasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
+ return 0;
+ }
+
+/* Compute machine epsilon */
+
+ eps = slamch_("Epsilon");
+ rhoinv = 1.f / *rho;
+
+/* The case I = N */
+
+ if (*i__ == *n) {
+
+/* Initialize some basic variables */
+
+ ii = *n - 1;
+ niter = 1;
+
+/* Calculate initial guess */
+
+ temp = *rho / 2.f;
+
+/* If ||Z||_2 is not one, then TEMP should be set to */
+/* RHO * ||Z||_2^2 / TWO */
+
+ temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[*n] + temp1;
+ delta[j] = d__[j] - d__[*n] - temp1;
+/* L10: */
+ }
+
+ psi = 0.f;
+ i__1 = *n - 2;
+ for (j = 1; j <= i__1; ++j) {
+ psi += z__[j] * z__[j] / (delta[j] * work[j]);
+/* L20: */
+ }
+
+ c__ = rhoinv + psi;
+ w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
+ n] / (delta[*n] * work[*n]);
+
+ if (w <= 0.f) {
+ temp1 = sqrt(d__[*n] * d__[*n] + *rho);
+ temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
+ n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] *
+ z__[*n] / *rho;
+
+/* The following TAU is to approximate */
+/* SIGMA_n^2 - D( N )*D( N ) */
+
+ if (c__ <= temp) {
+ tau = *rho;
+ } else {
+ delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
+ a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
+ n];
+ b = z__[*n] * z__[*n] * delsq;
+ if (a < 0.f) {
+ tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
+ } else {
+ tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
+ }
+ }
+
+/* It can be proved that */
+/* D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO */
+
+ } else {
+ delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
+ a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
+ b = z__[*n] * z__[*n] * delsq;
+
+/* The following TAU is to approximate */
+/* SIGMA_n^2 - D( N )*D( N ) */
+
+ if (a < 0.f) {
+ tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
+ } else {
+ tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
+ }
+
+/* It can be proved that */
+/* D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2 */
+
+ }
+
+/* The following ETA is to approximate SIGMA_n - D( N ) */
+
+ eta = tau / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau));
+
+ *sigma = d__[*n] + eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] = d__[j] - d__[*i__] - eta;
+ work[j] = d__[j] + d__[*i__] + eta;
+/* L30: */
+ }
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.f;
+ psi = 0.f;
+ erretm = 0.f;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (delta[j] * work[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L40: */
+ }
+ erretm = dabs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / (delta[*n] * work[*n]);
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * (
+ dpsi + dphi);
+
+ w = rhoinv + phi + psi;
+
+/* Test for convergence */
+
+ if (dabs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+/* Calculate the new step */
+
+ ++niter;
+ dtnsq1 = work[*n - 1] * delta[*n - 1];
+ dtnsq = work[*n] * delta[*n];
+ c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
+ a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
+ b = dtnsq * dtnsq1 * w;
+ if (c__ < 0.f) {
+ c__ = dabs(c__);
+ }
+ if (c__ == 0.f) {
+ eta = *rho - *sigma * *sigma;
+ } else if (a >= 0.f) {
+ eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / (
+ c__ * 2.f);
+ } else {
+ eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(
+ r__1))));
+ }
+
+/* Note, eta should be positive if w is negative, and */
+/* eta should be negative otherwise. However, */
+/* if for some reason caused by roundoff, eta*w > 0, */
+/* we simply use one Newton step instead. This way */
+/* will guarantee eta*w < 0. */
+
+ if (w * eta > 0.f) {
+ eta = -w / (dpsi + dphi);
+ }
+ temp = eta - dtnsq;
+ if (temp > *rho) {
+ eta = *rho + dtnsq;
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(eta + *sigma * *sigma);
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+ work[j] += eta;
+/* L50: */
+ }
+
+ *sigma += eta;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.f;
+ psi = 0.f;
+ erretm = 0.f;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L60: */
+ }
+ erretm = dabs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / (work[*n] * delta[*n]);
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * (
+ dpsi + dphi);
+
+ w = rhoinv + phi + psi;
+
+/* Main loop to update the values of the array DELTA */
+
+ iter = niter + 1;
+
+ for (niter = iter; niter <= 20; ++niter) {
+
+/* Test for convergence */
+
+ if (dabs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+/* Calculate the new step */
+
+ dtnsq1 = work[*n - 1] * delta[*n - 1];
+ dtnsq = work[*n] * delta[*n];
+ c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
+ a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
+ b = dtnsq1 * dtnsq * w;
+ if (a >= 0.f) {
+ eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) /
+ (c__ * 2.f);
+ } else {
+ eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(
+ r__1))));
+ }
+
+/* Note, eta should be positive if w is negative, and */
+/* eta should be negative otherwise. However, */
+/* if for some reason caused by roundoff, eta*w > 0, */
+/* we simply use one Newton step instead. This way */
+/* will guarantee eta*w < 0. */
+
+ if (w * eta > 0.f) {
+ eta = -w / (dpsi + dphi);
+ }
+ temp = eta - dtnsq;
+ if (temp <= 0.f) {
+ eta /= 2.f;
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(eta + *sigma * *sigma);
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+ work[j] += eta;
+/* L70: */
+ }
+
+ *sigma += eta;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.f;
+ psi = 0.f;
+ erretm = 0.f;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L80: */
+ }
+ erretm = dabs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / (work[*n] * delta[*n]);
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) *
+ (dpsi + dphi);
+
+ w = rhoinv + phi + psi;
+/* L90: */
+ }
+
+/* Return with INFO = 1, NITER = MAXIT and not converged */
+
+ *info = 1;
+ goto L240;
+
+/* End for the case I = N */
+
+ } else {
+
+/* The case for I < N */
+
+ niter = 1;
+ ip1 = *i__ + 1;
+
+/* Calculate initial guess */
+
+ delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
+ delsq2 = delsq / 2.f;
+ temp = delsq2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + delsq2));
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[*i__] + temp;
+ delta[j] = d__[j] - d__[*i__] - temp;
+/* L100: */
+ }
+
+ psi = 0.f;
+ i__1 = *i__ - 1;
+ for (j = 1; j <= i__1; ++j) {
+ psi += z__[j] * z__[j] / (work[j] * delta[j]);
+/* L110: */
+ }
+
+ phi = 0.f;
+ i__1 = *i__ + 2;
+ for (j = *n; j >= i__1; --j) {
+ phi += z__[j] * z__[j] / (work[j] * delta[j]);
+/* L120: */
+ }
+ c__ = rhoinv + psi + phi;
+ w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
+ ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
+
+ if (w > 0.f) {
+
+/* d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */
+
+/* We choose d(i) as origin. */
+
+ orgati = TRUE_;
+ sg2lb = 0.f;
+ sg2ub = delsq2;
+ a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
+ b = z__[*i__] * z__[*i__] * delsq;
+ if (a > 0.f) {
+ tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(
+ r__1))));
+ } else {
+ tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) /
+ (c__ * 2.f);
+ }
+
+/* TAU now is an estimation of SIGMA^2 - D( I )^2. The */
+/* following, however, is the corresponding estimation of */
+/* SIGMA - D( I ). */
+
+ eta = tau / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau));
+ } else {
+
+/* (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */
+
+/* We choose d(i+1) as origin. */
+
+ orgati = FALSE_;
+ sg2lb = -delsq2;
+ sg2ub = 0.f;
+ a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
+ b = z__[ip1] * z__[ip1] * delsq;
+ if (a < 0.f) {
+ tau = b * 2.f / (a - sqrt((r__1 = a * a + b * 4.f * c__, dabs(
+ r__1))));
+ } else {
+ tau = -(a + sqrt((r__1 = a * a + b * 4.f * c__, dabs(r__1))))
+ / (c__ * 2.f);
+ }
+
+/* TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The */
+/* following, however, is the corresponding estimation of */
+/* SIGMA - D( IP1 ). */
+
+ eta = tau / (d__[ip1] + sqrt((r__1 = d__[ip1] * d__[ip1] + tau,
+ dabs(r__1))));
+ }
+
+ if (orgati) {
+ ii = *i__;
+ *sigma = d__[*i__] + eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[*i__] + eta;
+ delta[j] = d__[j] - d__[*i__] - eta;
+/* L130: */
+ }
+ } else {
+ ii = *i__ + 1;
+ *sigma = d__[ip1] + eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[ip1] + eta;
+ delta[j] = d__[j] - d__[ip1] - eta;
+/* L140: */
+ }
+ }
+ iim1 = ii - 1;
+ iip1 = ii + 1;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.f;
+ psi = 0.f;
+ erretm = 0.f;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L150: */
+ }
+ erretm = dabs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.f;
+ phi = 0.f;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L160: */
+ }
+
+ w = rhoinv + phi + psi;
+
+/* W is the value of the secular function with */
+/* its ii-th element removed. */
+
+ swtch3 = FALSE_;
+ if (orgati) {
+ if (w < 0.f) {
+ swtch3 = TRUE_;
+ }
+ } else {
+ if (w > 0.f) {
+ swtch3 = TRUE_;
+ }
+ }
+ if (ii == 1 || ii == *n) {
+ swtch3 = FALSE_;
+ }
+
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w += temp;
+ erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * 3.f
+ + dabs(tau) * dw;
+
+/* Test for convergence */
+
+ if (dabs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+ if (w <= 0.f) {
+ sg2lb = dmax(sg2lb,tau);
+ } else {
+ sg2ub = dmin(sg2ub,tau);
+ }
+
+/* Calculate the new step */
+
+ ++niter;
+ if (! swtch3) {
+ dtipsq = work[ip1] * delta[ip1];
+ dtisq = work[*i__] * delta[*i__];
+ if (orgati) {
+/* Computing 2nd power */
+ r__1 = z__[*i__] / dtisq;
+ c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
+ } else {
+/* Computing 2nd power */
+ r__1 = z__[ip1] / dtipsq;
+ c__ = w - dtisq * dw - delsq * (r__1 * r__1);
+ }
+ a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
+ b = dtipsq * dtisq * w;
+ if (c__ == 0.f) {
+ if (a == 0.f) {
+ if (orgati) {
+ a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi +
+ dphi);
+ } else {
+ a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi +
+ dphi);
+ }
+ }
+ eta = b / a;
+ } else if (a <= 0.f) {
+ eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) /
+ (c__ * 2.f);
+ } else {
+ eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(
+ r__1))));
+ }
+ } else {
+
+/* Interpolation using THREE most relevant poles */
+
+ dtiim = work[iim1] * delta[iim1];
+ dtiip = work[iip1] * delta[iip1];
+ temp = rhoinv + psi + phi;
+ if (orgati) {
+ temp1 = z__[iim1] / dtiim;
+ temp1 *= temp1;
+ c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
+ (d__[iim1] + d__[iip1]) * temp1;
+ zz[0] = z__[iim1] * z__[iim1];
+ if (dpsi < temp1) {
+ zz[2] = dtiip * dtiip * dphi;
+ } else {
+ zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
+ }
+ } else {
+ temp1 = z__[iip1] / dtiip;
+ temp1 *= temp1;
+ c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
+ (d__[iim1] + d__[iip1]) * temp1;
+ if (dphi < temp1) {
+ zz[0] = dtiim * dtiim * dpsi;
+ } else {
+ zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
+ }
+ zz[2] = z__[iip1] * z__[iip1];
+ }
+ zz[1] = z__[ii] * z__[ii];
+ dd[0] = dtiim;
+ dd[1] = delta[ii] * work[ii];
+ dd[2] = dtiip;
+ slaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
+ if (*info != 0) {
+ goto L240;
+ }
+ }
+
+/* Note, eta should be positive if w is negative, and */
+/* eta should be negative otherwise. However, */
+/* if for some reason caused by roundoff, eta*w > 0, */
+/* we simply use one Newton step instead. This way */
+/* will guarantee eta*w < 0. */
+
+ if (w * eta >= 0.f) {
+ eta = -w / dw;
+ }
+ if (orgati) {
+ temp1 = work[*i__] * delta[*i__];
+ temp = eta - temp1;
+ } else {
+ temp1 = work[ip1] * delta[ip1];
+ temp = eta - temp1;
+ }
+ if (temp > sg2ub || temp < sg2lb) {
+ if (w < 0.f) {
+ eta = (sg2ub - tau) / 2.f;
+ } else {
+ eta = (sg2lb - tau) / 2.f;
+ }
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(*sigma * *sigma + eta);
+
+ prew = w;
+
+ *sigma += eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] += eta;
+ delta[j] -= eta;
+/* L170: */
+ }
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.f;
+ psi = 0.f;
+ erretm = 0.f;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L180: */
+ }
+ erretm = dabs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.f;
+ phi = 0.f;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L190: */
+ }
+
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w = rhoinv + phi + psi + temp;
+ erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * 3.f
+ + dabs(tau) * dw;
+
+ if (w <= 0.f) {
+ sg2lb = dmax(sg2lb,tau);
+ } else {
+ sg2ub = dmin(sg2ub,tau);
+ }
+
+ swtch = FALSE_;
+ if (orgati) {
+ if (-w > dabs(prew) / 10.f) {
+ swtch = TRUE_;
+ }
+ } else {
+ if (w > dabs(prew) / 10.f) {
+ swtch = TRUE_;
+ }
+ }
+
+/* Main loop to update the values of the array DELTA and WORK */
+
+ iter = niter + 1;
+
+ for (niter = iter; niter <= 20; ++niter) {
+
+/* Test for convergence */
+
+ if (dabs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+/* Calculate the new step */
+
+ if (! swtch3) {
+ dtipsq = work[ip1] * delta[ip1];
+ dtisq = work[*i__] * delta[*i__];
+ if (! swtch) {
+ if (orgati) {
+/* Computing 2nd power */
+ r__1 = z__[*i__] / dtisq;
+ c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
+ } else {
+/* Computing 2nd power */
+ r__1 = z__[ip1] / dtipsq;
+ c__ = w - dtisq * dw - delsq * (r__1 * r__1);
+ }
+ } else {
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ if (orgati) {
+ dpsi += temp * temp;
+ } else {
+ dphi += temp * temp;
+ }
+ c__ = w - dtisq * dpsi - dtipsq * dphi;
+ }
+ a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
+ b = dtipsq * dtisq * w;
+ if (c__ == 0.f) {
+ if (a == 0.f) {
+ if (! swtch) {
+ if (orgati) {
+ a = z__[*i__] * z__[*i__] + dtipsq * dtipsq *
+ (dpsi + dphi);
+ } else {
+ a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
+ dpsi + dphi);
+ }
+ } else {
+ a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
+ }
+ }
+ eta = b / a;
+ } else if (a <= 0.f) {
+ eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1))
+ )) / (c__ * 2.f);
+ } else {
+ eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__,
+ dabs(r__1))));
+ }
+ } else {
+
+/* Interpolation using THREE most relevant poles */
+
+ dtiim = work[iim1] * delta[iim1];
+ dtiip = work[iip1] * delta[iip1];
+ temp = rhoinv + psi + phi;
+ if (swtch) {
+ c__ = temp - dtiim * dpsi - dtiip * dphi;
+ zz[0] = dtiim * dtiim * dpsi;
+ zz[2] = dtiip * dtiip * dphi;
+ } else {
+ if (orgati) {
+ temp1 = z__[iim1] / dtiim;
+ temp1 *= temp1;
+ temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
+ iip1]) * temp1;
+ c__ = temp - dtiip * (dpsi + dphi) - temp2;
+ zz[0] = z__[iim1] * z__[iim1];
+ if (dpsi < temp1) {
+ zz[2] = dtiip * dtiip * dphi;
+ } else {
+ zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
+ }
+ } else {
+ temp1 = z__[iip1] / dtiip;
+ temp1 *= temp1;
+ temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
+ iip1]) * temp1;
+ c__ = temp - dtiim * (dpsi + dphi) - temp2;
+ if (dphi < temp1) {
+ zz[0] = dtiim * dtiim * dpsi;
+ } else {
+ zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
+ }
+ zz[2] = z__[iip1] * z__[iip1];
+ }
+ }
+ dd[0] = dtiim;
+ dd[1] = delta[ii] * work[ii];
+ dd[2] = dtiip;
+ slaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
+ if (*info != 0) {
+ goto L240;
+ }
+ }
+
+/* Note, eta should be positive if w is negative, and */
+/* eta should be negative otherwise. However, */
+/* if for some reason caused by roundoff, eta*w > 0, */
+/* we simply use one Newton step instead. This way */
+/* will guarantee eta*w < 0. */
+
+ if (w * eta >= 0.f) {
+ eta = -w / dw;
+ }
+ if (orgati) {
+ temp1 = work[*i__] * delta[*i__];
+ temp = eta - temp1;
+ } else {
+ temp1 = work[ip1] * delta[ip1];
+ temp = eta - temp1;
+ }
+ if (temp > sg2ub || temp < sg2lb) {
+ if (w < 0.f) {
+ eta = (sg2ub - tau) / 2.f;
+ } else {
+ eta = (sg2lb - tau) / 2.f;
+ }
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(*sigma * *sigma + eta);
+
+ *sigma += eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] += eta;
+ delta[j] -= eta;
+/* L200: */
+ }
+
+ prew = w;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.f;
+ psi = 0.f;
+ erretm = 0.f;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L210: */
+ }
+ erretm = dabs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.f;
+ phi = 0.f;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L220: */
+ }
+
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w = rhoinv + phi + psi + temp;
+ erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) *
+ 3.f + dabs(tau) * dw;
+ if (w * prew > 0.f && dabs(w) > dabs(prew) / 10.f) {
+ swtch = ! swtch;
+ }
+
+ if (w <= 0.f) {
+ sg2lb = dmax(sg2lb,tau);
+ } else {
+ sg2ub = dmin(sg2ub,tau);
+ }
+
+/* L230: */
+ }
+
+/* Return with INFO = 1, NITER = MAXIT and not converged */
+
+ *info = 1;
+
+ }
+
+L240:
+ return 0;
+
+/* End of SLASD4 */
+
+} /* slasd4_ */