aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slasd2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slasd2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slasd2.c')
-rw-r--r--contrib/libs/clapack/slasd2.c607
1 files changed, 607 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slasd2.c b/contrib/libs/clapack/slasd2.c
new file mode 100644
index 0000000000..15e3e47fe5
--- /dev/null
+++ b/contrib/libs/clapack/slasd2.c
@@ -0,0 +1,607 @@
+/* slasd2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static real c_b30 = 0.f;
+
+/* Subroutine */ int slasd2_(integer *nl, integer *nr, integer *sqre, integer
+ *k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
+ ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2,
+ real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc,
+ integer *idxq, integer *coltyp, integer *info)
+{
+ /* System generated locals */
+ integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
+ vt2_dim1, vt2_offset, i__1;
+ real r__1, r__2;
+
+ /* Local variables */
+ real c__;
+ integer i__, j, m, n;
+ real s;
+ integer k2;
+ real z1;
+ integer ct, jp;
+ real eps, tau, tol;
+ integer psm[4], nlp1, nlp2, idxi, idxj, ctot[4];
+ extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
+ integer *, real *, real *);
+ integer idxjp, jprev;
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *);
+ extern doublereal slapy2_(real *, real *), slamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
+ integer *, integer *, real *, integer *, integer *, integer *);
+ real hlftol;
+ extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
+ integer *, real *, integer *), slaset_(char *, integer *,
+ integer *, real *, real *, real *, integer *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SLASD2 merges the two sets of singular values together into a single */
+/* sorted set. Then it tries to deflate the size of the problem. */
+/* There are two ways in which deflation can occur: when two or more */
+/* singular values are close together or if there is a tiny entry in the */
+/* Z vector. For each such occurrence the order of the related secular */
+/* equation problem is reduced by one. */
+
+/* SLASD2 is called from SLASD1. */
+
+/* Arguments */
+/* ========= */
+
+/* NL (input) INTEGER */
+/* The row dimension of the upper block. NL >= 1. */
+
+/* NR (input) INTEGER */
+/* The row dimension of the lower block. NR >= 1. */
+
+/* SQRE (input) INTEGER */
+/* = 0: the lower block is an NR-by-NR square matrix. */
+/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
+
+/* The bidiagonal matrix has N = NL + NR + 1 rows and */
+/* M = N + SQRE >= N columns. */
+
+/* K (output) INTEGER */
+/* Contains the dimension of the non-deflated matrix, */
+/* This is the order of the related secular equation. 1 <= K <=N. */
+
+/* D (input/output) REAL array, dimension (N) */
+/* On entry D contains the singular values of the two submatrices */
+/* to be combined. On exit D contains the trailing (N-K) updated */
+/* singular values (those which were deflated) sorted into */
+/* increasing order. */
+
+/* Z (output) REAL array, dimension (N) */
+/* On exit Z contains the updating row vector in the secular */
+/* equation. */
+
+/* ALPHA (input) REAL */
+/* Contains the diagonal element associated with the added row. */
+
+/* BETA (input) REAL */
+/* Contains the off-diagonal element associated with the added */
+/* row. */
+
+/* U (input/output) REAL array, dimension (LDU,N) */
+/* On entry U contains the left singular vectors of two */
+/* submatrices in the two square blocks with corners at (1,1), */
+/* (NL, NL), and (NL+2, NL+2), (N,N). */
+/* On exit U contains the trailing (N-K) updated left singular */
+/* vectors (those which were deflated) in its last N-K columns. */
+
+/* LDU (input) INTEGER */
+/* The leading dimension of the array U. LDU >= N. */
+
+/* VT (input/output) REAL array, dimension (LDVT,M) */
+/* On entry VT' contains the right singular vectors of two */
+/* submatrices in the two square blocks with corners at (1,1), */
+/* (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
+/* On exit VT' contains the trailing (N-K) updated right singular */
+/* vectors (those which were deflated) in its last N-K columns. */
+/* In case SQRE =1, the last row of VT spans the right null */
+/* space. */
+
+/* LDVT (input) INTEGER */
+/* The leading dimension of the array VT. LDVT >= M. */
+
+/* DSIGMA (output) REAL array, dimension (N) */
+/* Contains a copy of the diagonal elements (K-1 singular values */
+/* and one zero) in the secular equation. */
+
+/* U2 (output) REAL array, dimension (LDU2,N) */
+/* Contains a copy of the first K-1 left singular vectors which */
+/* will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
+/* for the new left singular vectors. U2 is arranged into four */
+/* blocks. The first block contains a column with 1 at NL+1 and */
+/* zero everywhere else; the second block contains non-zero */
+/* entries only at and above NL; the third contains non-zero */
+/* entries only below NL+1; and the fourth is dense. */
+
+/* LDU2 (input) INTEGER */
+/* The leading dimension of the array U2. LDU2 >= N. */
+
+/* VT2 (output) REAL array, dimension (LDVT2,N) */
+/* VT2' contains a copy of the first K right singular vectors */
+/* which will be used by SLASD3 in a matrix multiply (SGEMM) to */
+/* solve for the new right singular vectors. VT2 is arranged into */
+/* three blocks. The first block contains a row that corresponds */
+/* to the special 0 diagonal element in SIGMA; the second block */
+/* contains non-zeros only at and before NL +1; the third block */
+/* contains non-zeros only at and after NL +2. */
+
+/* LDVT2 (input) INTEGER */
+/* The leading dimension of the array VT2. LDVT2 >= M. */
+
+/* IDXP (workspace) INTEGER array, dimension (N) */
+/* This will contain the permutation used to place deflated */
+/* values of D at the end of the array. On output IDXP(2:K) */
+/* points to the nondeflated D-values and IDXP(K+1:N) */
+/* points to the deflated singular values. */
+
+/* IDX (workspace) INTEGER array, dimension (N) */
+/* This will contain the permutation used to sort the contents of */
+/* D into ascending order. */
+
+/* IDXC (output) INTEGER array, dimension (N) */
+/* This will contain the permutation used to arrange the columns */
+/* of the deflated U matrix into three groups: the first group */
+/* contains non-zero entries only at and above NL, the second */
+/* contains non-zero entries only below NL+2, and the third is */
+/* dense. */
+
+/* IDXQ (input/output) INTEGER array, dimension (N) */
+/* This contains the permutation which separately sorts the two */
+/* sub-problems in D into ascending order. Note that entries in */
+/* the first hlaf of this permutation must first be moved one */
+/* position backward; and entries in the second half */
+/* must first have NL+1 added to their values. */
+
+/* COLTYP (workspace/output) INTEGER array, dimension (N) */
+/* As workspace, this will contain a label which will indicate */
+/* which of the following types a column in the U2 matrix or a */
+/* row in the VT2 matrix is: */
+/* 1 : non-zero in the upper half only */
+/* 2 : non-zero in the lower half only */
+/* 3 : dense */
+/* 4 : deflated */
+
+/* On exit, it is an array of dimension 4, with COLTYP(I) being */
+/* the dimension of the I-th type columns. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Ming Gu and Huan Ren, Computer Science Division, University of */
+/* California at Berkeley, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ --z__;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1;
+ vt -= vt_offset;
+ --dsigma;
+ u2_dim1 = *ldu2;
+ u2_offset = 1 + u2_dim1;
+ u2 -= u2_offset;
+ vt2_dim1 = *ldvt2;
+ vt2_offset = 1 + vt2_dim1;
+ vt2 -= vt2_offset;
+ --idxp;
+ --idx;
+ --idxc;
+ --idxq;
+ --coltyp;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*nl < 1) {
+ *info = -1;
+ } else if (*nr < 1) {
+ *info = -2;
+ } else if (*sqre != 1 && *sqre != 0) {
+ *info = -3;
+ }
+
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+
+ if (*ldu < n) {
+ *info = -10;
+ } else if (*ldvt < m) {
+ *info = -12;
+ } else if (*ldu2 < n) {
+ *info = -15;
+ } else if (*ldvt2 < m) {
+ *info = -17;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SLASD2", &i__1);
+ return 0;
+ }
+
+ nlp1 = *nl + 1;
+ nlp2 = *nl + 2;
+
+/* Generate the first part of the vector Z; and move the singular */
+/* values in the first part of D one position backward. */
+
+ z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
+ z__[1] = z1;
+ for (i__ = *nl; i__ >= 1; --i__) {
+ z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
+ d__[i__ + 1] = d__[i__];
+ idxq[i__ + 1] = idxq[i__] + 1;
+/* L10: */
+ }
+
+/* Generate the second part of the vector Z. */
+
+ i__1 = m;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
+/* L20: */
+ }
+
+/* Initialize some reference arrays. */
+
+ i__1 = nlp1;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ coltyp[i__] = 1;
+/* L30: */
+ }
+ i__1 = n;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ coltyp[i__] = 2;
+/* L40: */
+ }
+
+/* Sort the singular values into increasing order */
+
+ i__1 = n;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ idxq[i__] += nlp1;
+/* L50: */
+ }
+
+/* DSIGMA, IDXC, IDXC, and the first column of U2 */
+/* are used as storage space. */
+
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ dsigma[i__] = d__[idxq[i__]];
+ u2[i__ + u2_dim1] = z__[idxq[i__]];
+ idxc[i__] = coltyp[idxq[i__]];
+/* L60: */
+ }
+
+ slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
+
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ idxi = idx[i__] + 1;
+ d__[i__] = dsigma[idxi];
+ z__[i__] = u2[idxi + u2_dim1];
+ coltyp[i__] = idxc[idxi];
+/* L70: */
+ }
+
+/* Calculate the allowable deflation tolerance */
+
+ eps = slamch_("Epsilon");
+/* Computing MAX */
+ r__1 = dabs(*alpha), r__2 = dabs(*beta);
+ tol = dmax(r__1,r__2);
+/* Computing MAX */
+ r__2 = (r__1 = d__[n], dabs(r__1));
+ tol = eps * 8.f * dmax(r__2,tol);
+
+/* There are 2 kinds of deflation -- first a value in the z-vector */
+/* is small, second two (or more) singular values are very close */
+/* together (their difference is small). */
+
+/* If the value in the z-vector is small, we simply permute the */
+/* array so that the corresponding singular value is moved to the */
+/* end. */
+
+/* If two values in the D-vector are close, we perform a two-sided */
+/* rotation designed to make one of the corresponding z-vector */
+/* entries zero, and then permute the array so that the deflated */
+/* singular value is moved to the end. */
+
+/* If there are multiple singular values then the problem deflates. */
+/* Here the number of equal singular values are found. As each equal */
+/* singular value is found, an elementary reflector is computed to */
+/* rotate the corresponding singular subspace so that the */
+/* corresponding components of Z are zero in this new basis. */
+
+ *k = 1;
+ k2 = n + 1;
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ if ((r__1 = z__[j], dabs(r__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ idxp[k2] = j;
+ coltyp[j] = 4;
+ if (j == n) {
+ goto L120;
+ }
+ } else {
+ jprev = j;
+ goto L90;
+ }
+/* L80: */
+ }
+L90:
+ j = jprev;
+L100:
+ ++j;
+ if (j > n) {
+ goto L110;
+ }
+ if ((r__1 = z__[j], dabs(r__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ idxp[k2] = j;
+ coltyp[j] = 4;
+ } else {
+
+/* Check if singular values are close enough to allow deflation. */
+
+ if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) {
+
+/* Deflation is possible. */
+
+ s = z__[jprev];
+ c__ = z__[j];
+
+/* Find sqrt(a**2+b**2) without overflow or */
+/* destructive underflow. */
+
+ tau = slapy2_(&c__, &s);
+ c__ /= tau;
+ s = -s / tau;
+ z__[j] = tau;
+ z__[jprev] = 0.f;
+
+/* Apply back the Givens rotation to the left and right */
+/* singular vector matrices. */
+
+ idxjp = idxq[idx[jprev] + 1];
+ idxj = idxq[idx[j] + 1];
+ if (idxjp <= nlp1) {
+ --idxjp;
+ }
+ if (idxj <= nlp1) {
+ --idxj;
+ }
+ srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
+ c__1, &c__, &s);
+ srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
+ c__, &s);
+ if (coltyp[j] != coltyp[jprev]) {
+ coltyp[j] = 3;
+ }
+ coltyp[jprev] = 4;
+ --k2;
+ idxp[k2] = jprev;
+ jprev = j;
+ } else {
+ ++(*k);
+ u2[*k + u2_dim1] = z__[jprev];
+ dsigma[*k] = d__[jprev];
+ idxp[*k] = jprev;
+ jprev = j;
+ }
+ }
+ goto L100;
+L110:
+
+/* Record the last singular value. */
+
+ ++(*k);
+ u2[*k + u2_dim1] = z__[jprev];
+ dsigma[*k] = d__[jprev];
+ idxp[*k] = jprev;
+
+L120:
+
+/* Count up the total number of the various types of columns, then */
+/* form a permutation which positions the four column types into */
+/* four groups of uniform structure (although one or more of these */
+/* groups may be empty). */
+
+ for (j = 1; j <= 4; ++j) {
+ ctot[j - 1] = 0;
+/* L130: */
+ }
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ ct = coltyp[j];
+ ++ctot[ct - 1];
+/* L140: */
+ }
+
+/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
+
+ psm[0] = 2;
+ psm[1] = ctot[0] + 2;
+ psm[2] = psm[1] + ctot[1];
+ psm[3] = psm[2] + ctot[2];
+
+/* Fill out the IDXC array so that the permutation which it induces */
+/* will place all type-1 columns first, all type-2 columns next, */
+/* then all type-3's, and finally all type-4's, starting from the */
+/* second column. This applies similarly to the rows of VT. */
+
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ jp = idxp[j];
+ ct = coltyp[jp];
+ idxc[psm[ct - 1]] = j;
+ ++psm[ct - 1];
+/* L150: */
+ }
+
+/* Sort the singular values and corresponding singular vectors into */
+/* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
+/* which were not deflated go into the first K slots of DSIGMA, U2, */
+/* and VT2 respectively, while those which were deflated go into the */
+/* last N - K slots, except that the first column/row will be treated */
+/* separately. */
+
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ jp = idxp[j];
+ dsigma[j] = d__[jp];
+ idxj = idxq[idx[idxp[idxc[j]]] + 1];
+ if (idxj <= nlp1) {
+ --idxj;
+ }
+ scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
+ scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
+/* L160: */
+ }
+
+/* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
+
+ dsigma[1] = 0.f;
+ hlftol = tol / 2.f;
+ if (dabs(dsigma[2]) <= hlftol) {
+ dsigma[2] = hlftol;
+ }
+ if (m > n) {
+ z__[1] = slapy2_(&z1, &z__[m]);
+ if (z__[1] <= tol) {
+ c__ = 1.f;
+ s = 0.f;
+ z__[1] = tol;
+ } else {
+ c__ = z1 / z__[1];
+ s = z__[m] / z__[1];
+ }
+ } else {
+ if (dabs(z1) <= tol) {
+ z__[1] = tol;
+ } else {
+ z__[1] = z1;
+ }
+ }
+
+/* Move the rest of the updating row to Z. */
+
+ i__1 = *k - 1;
+ scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
+
+/* Determine the first column of U2, the first row of VT2 and the */
+/* last row of VT. */
+
+ slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
+ u2[nlp1 + u2_dim1] = 1.f;
+ if (m > n) {
+ i__1 = nlp1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
+ vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
+/* L170: */
+ }
+ i__1 = m;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
+ vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
+/* L180: */
+ }
+ } else {
+ scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
+ }
+ if (m > n) {
+ scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
+ }
+
+/* The deflated singular values and their corresponding vectors go */
+/* into the back of D, U, and V respectively. */
+
+ if (n > *k) {
+ i__1 = n - *k;
+ scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
+ i__1 = n - *k;
+ slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
+ * u_dim1 + 1], ldu);
+ i__1 = n - *k;
+ slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
+ vt_dim1], ldvt);
+ }
+
+/* Copy CTOT into COLTYP for referencing in SLASD3. */
+
+ for (j = 1; j <= 4; ++j) {
+ coltyp[j] = ctot[j - 1];
+/* L190: */
+ }
+
+ return 0;
+
+/* End of SLASD2 */
+
+} /* slasd2_ */