diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slarrd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slarrd.c')
-rw-r--r-- | contrib/libs/clapack/slarrd.c | 790 |
1 files changed, 790 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slarrd.c b/contrib/libs/clapack/slarrd.c new file mode 100644 index 0000000000..7670ff9edf --- /dev/null +++ b/contrib/libs/clapack/slarrd.c @@ -0,0 +1,790 @@ +/* slarrd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__3 = 3; +static integer c__2 = 2; +static integer c__0 = 0; + +/* Subroutine */ int slarrd_(char *range, char *order, integer *n, real *vl, + real *vu, integer *il, integer *iu, real *gers, real *reltol, real * + d__, real *e, real *e2, real *pivmin, integer *nsplit, integer * + isplit, integer *m, real *w, real *werr, real *wl, real *wu, integer * + iblock, integer *indexw, real *work, integer *iwork, integer *info) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + real r__1, r__2; + + /* Builtin functions */ + double log(doublereal); + + /* Local variables */ + integer i__, j, ib, ie, je, nb; + real gl; + integer im, in; + real gu; + integer iw, jee; + real eps; + integer nwl; + real wlu, wul; + integer nwu; + real tmp1, tmp2; + integer iend, jblk, ioff, iout, itmp1, itmp2, jdisc; + extern logical lsame_(char *, char *); + integer iinfo; + real atoli; + integer iwoff, itmax; + real wkill, rtoli, uflow, tnorm; + integer ibegin, irange, idiscl; + extern doublereal slamch_(char *); + integer idumma[1]; + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + integer idiscu; + extern /* Subroutine */ int slaebz_(integer *, integer *, integer *, + integer *, integer *, integer *, real *, real *, real *, real *, + real *, real *, integer *, real *, real *, integer *, integer *, + real *, integer *, integer *); + logical ncnvrg, toofew; + + +/* -- LAPACK auxiliary routine (version 3.2.1) -- */ +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ +/* -- April 2009 -- */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SLARRD computes the eigenvalues of a symmetric tridiagonal */ +/* matrix T to suitable accuracy. This is an auxiliary code to be */ +/* called from SSTEMR. */ +/* The user may ask for all eigenvalues, all eigenvalues */ +/* in the half-open interval (VL, VU], or the IL-th through IU-th */ +/* eigenvalues. */ + +/* To avoid overflow, the matrix must be scaled so that its */ +/* largest element is no greater than overflow**(1/2) * */ +/* underflow**(1/4) in absolute value, and for greatest */ +/* accuracy, it should not be much smaller than that. */ + +/* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */ +/* Matrix", Report CS41, Computer Science Dept., Stanford */ +/* University, July 21, 1966. */ + +/* Arguments */ +/* ========= */ + +/* RANGE (input) CHARACTER */ +/* = 'A': ("All") all eigenvalues will be found. */ +/* = 'V': ("Value") all eigenvalues in the half-open interval */ +/* (VL, VU] will be found. */ +/* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */ +/* entire matrix) will be found. */ + +/* ORDER (input) CHARACTER */ +/* = 'B': ("By Block") the eigenvalues will be grouped by */ +/* split-off block (see IBLOCK, ISPLIT) and */ +/* ordered from smallest to largest within */ +/* the block. */ +/* = 'E': ("Entire matrix") */ +/* the eigenvalues for the entire matrix */ +/* will be ordered from smallest to */ +/* largest. */ + +/* N (input) INTEGER */ +/* The order of the tridiagonal matrix T. N >= 0. */ + +/* VL (input) REAL */ +/* VU (input) REAL */ +/* If RANGE='V', the lower and upper bounds of the interval to */ +/* be searched for eigenvalues. Eigenvalues less than or equal */ +/* to VL, or greater than VU, will not be returned. VL < VU. */ +/* Not referenced if RANGE = 'A' or 'I'. */ + +/* IL (input) INTEGER */ +/* IU (input) INTEGER */ +/* If RANGE='I', the indices (in ascending order) of the */ +/* smallest and largest eigenvalues to be returned. */ +/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ +/* Not referenced if RANGE = 'A' or 'V'. */ + +/* GERS (input) REAL array, dimension (2*N) */ +/* The N Gerschgorin intervals (the i-th Gerschgorin interval */ +/* is (GERS(2*i-1), GERS(2*i)). */ + +/* RELTOL (input) REAL */ +/* The minimum relative width of an interval. When an interval */ +/* is narrower than RELTOL times the larger (in */ +/* magnitude) endpoint, then it is considered to be */ +/* sufficiently small, i.e., converged. Note: this should */ +/* always be at least radix*machine epsilon. */ + +/* D (input) REAL array, dimension (N) */ +/* The n diagonal elements of the tridiagonal matrix T. */ + +/* E (input) REAL array, dimension (N-1) */ +/* The (n-1) off-diagonal elements of the tridiagonal matrix T. */ + +/* E2 (input) REAL array, dimension (N-1) */ +/* The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */ + +/* PIVMIN (input) REAL */ +/* The minimum pivot allowed in the Sturm sequence for T. */ + +/* NSPLIT (input) INTEGER */ +/* The number of diagonal blocks in the matrix T. */ +/* 1 <= NSPLIT <= N. */ + +/* ISPLIT (input) INTEGER array, dimension (N) */ +/* The splitting points, at which T breaks up into submatrices. */ +/* The first submatrix consists of rows/columns 1 to ISPLIT(1), */ +/* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */ +/* etc., and the NSPLIT-th consists of rows/columns */ +/* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */ +/* (Only the first NSPLIT elements will actually be used, but */ +/* since the user cannot know a priori what value NSPLIT will */ +/* have, N words must be reserved for ISPLIT.) */ + +/* M (output) INTEGER */ +/* The actual number of eigenvalues found. 0 <= M <= N. */ +/* (See also the description of INFO=2,3.) */ + +/* W (output) REAL array, dimension (N) */ +/* On exit, the first M elements of W will contain the */ +/* eigenvalue approximations. SLARRD computes an interval */ +/* I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue */ +/* approximation is given as the interval midpoint */ +/* W(j)= ( a_j + b_j)/2. The corresponding error is bounded by */ +/* WERR(j) = abs( a_j - b_j)/2 */ + +/* WERR (output) REAL array, dimension (N) */ +/* The error bound on the corresponding eigenvalue approximation */ +/* in W. */ + +/* WL (output) REAL */ +/* WU (output) REAL */ +/* The interval (WL, WU] contains all the wanted eigenvalues. */ +/* If RANGE='V', then WL=VL and WU=VU. */ +/* If RANGE='A', then WL and WU are the global Gerschgorin bounds */ +/* on the spectrum. */ +/* If RANGE='I', then WL and WU are computed by SLAEBZ from the */ +/* index range specified. */ + +/* IBLOCK (output) INTEGER array, dimension (N) */ +/* At each row/column j where E(j) is zero or small, the */ +/* matrix T is considered to split into a block diagonal */ +/* matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which */ +/* block (from 1 to the number of blocks) the eigenvalue W(i) */ +/* belongs. (SLARRD may use the remaining N-M elements as */ +/* workspace.) */ + +/* INDEXW (output) INTEGER array, dimension (N) */ +/* The indices of the eigenvalues within each block (submatrix); */ +/* for example, INDEXW(i)= j and IBLOCK(i)=k imply that the */ +/* i-th eigenvalue W(i) is the j-th eigenvalue in block k. */ + +/* WORK (workspace) REAL array, dimension (4*N) */ + +/* IWORK (workspace) INTEGER array, dimension (3*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: some or all of the eigenvalues failed to converge or */ +/* were not computed: */ +/* =1 or 3: Bisection failed to converge for some */ +/* eigenvalues; these eigenvalues are flagged by a */ +/* negative block number. The effect is that the */ +/* eigenvalues may not be as accurate as the */ +/* absolute and relative tolerances. This is */ +/* generally caused by unexpectedly inaccurate */ +/* arithmetic. */ +/* =2 or 3: RANGE='I' only: Not all of the eigenvalues */ +/* IL:IU were found. */ +/* Effect: M < IU+1-IL */ +/* Cause: non-monotonic arithmetic, causing the */ +/* Sturm sequence to be non-monotonic. */ +/* Cure: recalculate, using RANGE='A', and pick */ +/* out eigenvalues IL:IU. In some cases, */ +/* increasing the PARAMETER "FUDGE" may */ +/* make things work. */ +/* = 4: RANGE='I', and the Gershgorin interval */ +/* initially used was too small. No eigenvalues */ +/* were computed. */ +/* Probable cause: your machine has sloppy */ +/* floating-point arithmetic. */ +/* Cure: Increase the PARAMETER "FUDGE", */ +/* recompile, and try again. */ + +/* Internal Parameters */ +/* =================== */ + +/* FUDGE REAL , default = 2 */ +/* A "fudge factor" to widen the Gershgorin intervals. Ideally, */ +/* a value of 1 should work, but on machines with sloppy */ +/* arithmetic, this needs to be larger. The default for */ +/* publicly released versions should be large enough to handle */ +/* the worst machine around. Note that this has no effect */ +/* on accuracy of the solution. */ + +/* Based on contributions by */ +/* W. Kahan, University of California, Berkeley, USA */ +/* Beresford Parlett, University of California, Berkeley, USA */ +/* Jim Demmel, University of California, Berkeley, USA */ +/* Inderjit Dhillon, University of Texas, Austin, USA */ +/* Osni Marques, LBNL/NERSC, USA */ +/* Christof Voemel, University of California, Berkeley, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + --iwork; + --work; + --indexw; + --iblock; + --werr; + --w; + --isplit; + --e2; + --e; + --d__; + --gers; + + /* Function Body */ + *info = 0; + +/* Decode RANGE */ + + if (lsame_(range, "A")) { + irange = 1; + } else if (lsame_(range, "V")) { + irange = 2; + } else if (lsame_(range, "I")) { + irange = 3; + } else { + irange = 0; + } + +/* Check for Errors */ + + if (irange <= 0) { + *info = -1; + } else if (! (lsame_(order, "B") || lsame_(order, + "E"))) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (irange == 2) { + if (*vl >= *vu) { + *info = -5; + } + } else if (irange == 3 && (*il < 1 || *il > max(1,*n))) { + *info = -6; + } else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) { + *info = -7; + } + + if (*info != 0) { + return 0; + } +/* Initialize error flags */ + *info = 0; + ncnvrg = FALSE_; + toofew = FALSE_; +/* Quick return if possible */ + *m = 0; + if (*n == 0) { + return 0; + } +/* Simplification: */ + if (irange == 3 && *il == 1 && *iu == *n) { + irange = 1; + } +/* Get machine constants */ + eps = slamch_("P"); + uflow = slamch_("U"); +/* Special Case when N=1 */ +/* Treat case of 1x1 matrix for quick return */ + if (*n == 1) { + if (irange == 1 || irange == 2 && d__[1] > *vl && d__[1] <= *vu || + irange == 3 && *il == 1 && *iu == 1) { + *m = 1; + w[1] = d__[1]; +/* The computation error of the eigenvalue is zero */ + werr[1] = 0.f; + iblock[1] = 1; + indexw[1] = 1; + } + return 0; + } +/* NB is the minimum vector length for vector bisection, or 0 */ +/* if only scalar is to be done. */ + nb = ilaenv_(&c__1, "SSTEBZ", " ", n, &c_n1, &c_n1, &c_n1); + if (nb <= 1) { + nb = 0; + } +/* Find global spectral radius */ + gl = d__[1]; + gu = d__[1]; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MIN */ + r__1 = gl, r__2 = gers[(i__ << 1) - 1]; + gl = dmin(r__1,r__2); +/* Computing MAX */ + r__1 = gu, r__2 = gers[i__ * 2]; + gu = dmax(r__1,r__2); +/* L5: */ + } +/* Compute global Gerschgorin bounds and spectral diameter */ +/* Computing MAX */ + r__1 = dabs(gl), r__2 = dabs(gu); + tnorm = dmax(r__1,r__2); + gl = gl - tnorm * 2.f * eps * *n - *pivmin * 4.f; + gu = gu + tnorm * 2.f * eps * *n + *pivmin * 4.f; +/* [JAN/28/2009] remove the line below since SPDIAM variable not use */ +/* SPDIAM = GU - GL */ +/* Input arguments for SLAEBZ: */ +/* The relative tolerance. An interval (a,b] lies within */ +/* "relative tolerance" if b-a < RELTOL*max(|a|,|b|), */ + rtoli = *reltol; +/* Set the absolute tolerance for interval convergence to zero to force */ +/* interval convergence based on relative size of the interval. */ +/* This is dangerous because intervals might not converge when RELTOL is */ +/* small. But at least a very small number should be selected so that for */ +/* strongly graded matrices, the code can get relatively accurate */ +/* eigenvalues. */ + atoli = uflow * 4.f + *pivmin * 4.f; + if (irange == 3) { +/* RANGE='I': Compute an interval containing eigenvalues */ +/* IL through IU. The initial interval [GL,GU] from the global */ +/* Gerschgorin bounds GL and GU is refined by SLAEBZ. */ + itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.f)) + + 2; + work[*n + 1] = gl; + work[*n + 2] = gl; + work[*n + 3] = gu; + work[*n + 4] = gu; + work[*n + 5] = gl; + work[*n + 6] = gu; + iwork[1] = -1; + iwork[2] = -1; + iwork[3] = *n + 1; + iwork[4] = *n + 1; + iwork[5] = *il - 1; + iwork[6] = *iu; + + slaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, pivmin, & + d__[1], &e[1], &e2[1], &iwork[5], &work[*n + 1], &work[*n + 5] +, &iout, &iwork[1], &w[1], &iblock[1], &iinfo); + if (iinfo != 0) { + *info = iinfo; + return 0; + } +/* On exit, output intervals may not be ordered by ascending negcount */ + if (iwork[6] == *iu) { + *wl = work[*n + 1]; + wlu = work[*n + 3]; + nwl = iwork[1]; + *wu = work[*n + 4]; + wul = work[*n + 2]; + nwu = iwork[4]; + } else { + *wl = work[*n + 2]; + wlu = work[*n + 4]; + nwl = iwork[2]; + *wu = work[*n + 3]; + wul = work[*n + 1]; + nwu = iwork[3]; + } +/* On exit, the interval [WL, WLU] contains a value with negcount NWL, */ +/* and [WUL, WU] contains a value with negcount NWU. */ + if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) { + *info = 4; + return 0; + } + } else if (irange == 2) { + *wl = *vl; + *wu = *vu; + } else if (irange == 1) { + *wl = gl; + *wu = gu; + } +/* Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU. */ +/* NWL accumulates the number of eigenvalues .le. WL, */ +/* NWU accumulates the number of eigenvalues .le. WU */ + *m = 0; + iend = 0; + *info = 0; + nwl = 0; + nwu = 0; + + i__1 = *nsplit; + for (jblk = 1; jblk <= i__1; ++jblk) { + ioff = iend; + ibegin = ioff + 1; + iend = isplit[jblk]; + in = iend - ioff; + + if (in == 1) { +/* 1x1 block */ + if (*wl >= d__[ibegin] - *pivmin) { + ++nwl; + } + if (*wu >= d__[ibegin] - *pivmin) { + ++nwu; + } + if (irange == 1 || *wl < d__[ibegin] - *pivmin && *wu >= d__[ + ibegin] - *pivmin) { + ++(*m); + w[*m] = d__[ibegin]; + werr[*m] = 0.f; +/* The gap for a single block doesn't matter for the later */ +/* algorithm and is assigned an arbitrary large value */ + iblock[*m] = jblk; + indexw[*m] = 1; + } +/* Disabled 2x2 case because of a failure on the following matrix */ +/* RANGE = 'I', IL = IU = 4 */ +/* Original Tridiagonal, d = [ */ +/* -0.150102010615740E+00 */ +/* -0.849897989384260E+00 */ +/* -0.128208148052635E-15 */ +/* 0.128257718286320E-15 */ +/* ]; */ +/* e = [ */ +/* -0.357171383266986E+00 */ +/* -0.180411241501588E-15 */ +/* -0.175152352710251E-15 */ +/* ]; */ + +/* ELSE IF( IN.EQ.2 ) THEN */ +/* * 2x2 block */ +/* DISC = SQRT( (HALF*(D(IBEGIN)-D(IEND)))**2 + E(IBEGIN)**2 ) */ +/* TMP1 = HALF*(D(IBEGIN)+D(IEND)) */ +/* L1 = TMP1 - DISC */ +/* IF( WL.GE. L1-PIVMIN ) */ +/* $ NWL = NWL + 1 */ +/* IF( WU.GE. L1-PIVMIN ) */ +/* $ NWU = NWU + 1 */ +/* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L1-PIVMIN .AND. WU.GE. */ +/* $ L1-PIVMIN ) ) THEN */ +/* M = M + 1 */ +/* W( M ) = L1 */ +/* * The uncertainty of eigenvalues of a 2x2 matrix is very small */ +/* WERR( M ) = EPS * ABS( W( M ) ) * TWO */ +/* IBLOCK( M ) = JBLK */ +/* INDEXW( M ) = 1 */ +/* ENDIF */ +/* L2 = TMP1 + DISC */ +/* IF( WL.GE. L2-PIVMIN ) */ +/* $ NWL = NWL + 1 */ +/* IF( WU.GE. L2-PIVMIN ) */ +/* $ NWU = NWU + 1 */ +/* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L2-PIVMIN .AND. WU.GE. */ +/* $ L2-PIVMIN ) ) THEN */ +/* M = M + 1 */ +/* W( M ) = L2 */ +/* * The uncertainty of eigenvalues of a 2x2 matrix is very small */ +/* WERR( M ) = EPS * ABS( W( M ) ) * TWO */ +/* IBLOCK( M ) = JBLK */ +/* INDEXW( M ) = 2 */ +/* ENDIF */ + } else { +/* General Case - block of size IN >= 2 */ +/* Compute local Gerschgorin interval and use it as the initial */ +/* interval for SLAEBZ */ + gu = d__[ibegin]; + gl = d__[ibegin]; + tmp1 = 0.f; + i__2 = iend; + for (j = ibegin; j <= i__2; ++j) { +/* Computing MIN */ + r__1 = gl, r__2 = gers[(j << 1) - 1]; + gl = dmin(r__1,r__2); +/* Computing MAX */ + r__1 = gu, r__2 = gers[j * 2]; + gu = dmax(r__1,r__2); +/* L40: */ + } +/* [JAN/28/2009] */ +/* change SPDIAM by TNORM in lines 2 and 3 thereafter */ +/* line 1: remove computation of SPDIAM (not useful anymore) */ +/* SPDIAM = GU - GL */ +/* GL = GL - FUDGE*SPDIAM*EPS*IN - FUDGE*PIVMIN */ +/* GU = GU + FUDGE*SPDIAM*EPS*IN + FUDGE*PIVMIN */ + gl = gl - tnorm * 2.f * eps * in - *pivmin * 2.f; + gu = gu + tnorm * 2.f * eps * in + *pivmin * 2.f; + + if (irange > 1) { + if (gu < *wl) { +/* the local block contains none of the wanted eigenvalues */ + nwl += in; + nwu += in; + goto L70; + } +/* refine search interval if possible, only range (WL,WU] matters */ + gl = dmax(gl,*wl); + gu = dmin(gu,*wu); + if (gl >= gu) { + goto L70; + } + } +/* Find negcount of initial interval boundaries GL and GU */ + work[*n + 1] = gl; + work[*n + in + 1] = gu; + slaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, + pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, & + work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], & + w[*m + 1], &iblock[*m + 1], &iinfo); + if (iinfo != 0) { + *info = iinfo; + return 0; + } + + nwl += iwork[1]; + nwu += iwork[in + 1]; + iwoff = *m - iwork[1]; +/* Compute Eigenvalues */ + itmax = (integer) ((log(gu - gl + *pivmin) - log(*pivmin)) / log( + 2.f)) + 2; + slaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, + pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, & + work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1], + &w[*m + 1], &iblock[*m + 1], &iinfo); + if (iinfo != 0) { + *info = iinfo; + return 0; + } + +/* Copy eigenvalues into W and IBLOCK */ +/* Use -JBLK for block number for unconverged eigenvalues. */ +/* Loop over the number of output intervals from SLAEBZ */ + i__2 = iout; + for (j = 1; j <= i__2; ++j) { +/* eigenvalue approximation is middle point of interval */ + tmp1 = (work[j + *n] + work[j + in + *n]) * .5f; +/* semi length of error interval */ + tmp2 = (r__1 = work[j + *n] - work[j + in + *n], dabs(r__1)) * + .5f; + if (j > iout - iinfo) { +/* Flag non-convergence. */ + ncnvrg = TRUE_; + ib = -jblk; + } else { + ib = jblk; + } + i__3 = iwork[j + in] + iwoff; + for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) { + w[je] = tmp1; + werr[je] = tmp2; + indexw[je] = je - iwoff; + iblock[je] = ib; +/* L50: */ + } +/* L60: */ + } + + *m += im; + } +L70: + ; + } +/* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */ +/* If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */ + if (irange == 3) { + idiscl = *il - 1 - nwl; + idiscu = nwu - *iu; + + if (idiscl > 0) { + im = 0; + i__1 = *m; + for (je = 1; je <= i__1; ++je) { +/* Remove some of the smallest eigenvalues from the left so that */ +/* at the end IDISCL =0. Move all eigenvalues up to the left. */ + if (w[je] <= wlu && idiscl > 0) { + --idiscl; + } else { + ++im; + w[im] = w[je]; + werr[im] = werr[je]; + indexw[im] = indexw[je]; + iblock[im] = iblock[je]; + } +/* L80: */ + } + *m = im; + } + if (idiscu > 0) { +/* Remove some of the largest eigenvalues from the right so that */ +/* at the end IDISCU =0. Move all eigenvalues up to the left. */ + im = *m + 1; + for (je = *m; je >= 1; --je) { + if (w[je] >= wul && idiscu > 0) { + --idiscu; + } else { + --im; + w[im] = w[je]; + werr[im] = werr[je]; + indexw[im] = indexw[je]; + iblock[im] = iblock[je]; + } +/* L81: */ + } + jee = 0; + i__1 = *m; + for (je = im; je <= i__1; ++je) { + ++jee; + w[jee] = w[je]; + werr[jee] = werr[je]; + indexw[jee] = indexw[je]; + iblock[jee] = iblock[je]; +/* L82: */ + } + *m = *m - im + 1; + } + if (idiscl > 0 || idiscu > 0) { +/* Code to deal with effects of bad arithmetic. (If N(w) is */ +/* monotone non-decreasing, this should never happen.) */ +/* Some low eigenvalues to be discarded are not in (WL,WLU], */ +/* or high eigenvalues to be discarded are not in (WUL,WU] */ +/* so just kill off the smallest IDISCL/largest IDISCU */ +/* eigenvalues, by marking the corresponding IBLOCK = 0 */ + if (idiscl > 0) { + wkill = *wu; + i__1 = idiscl; + for (jdisc = 1; jdisc <= i__1; ++jdisc) { + iw = 0; + i__2 = *m; + for (je = 1; je <= i__2; ++je) { + if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) { + iw = je; + wkill = w[je]; + } +/* L90: */ + } + iblock[iw] = 0; +/* L100: */ + } + } + if (idiscu > 0) { + wkill = *wl; + i__1 = idiscu; + for (jdisc = 1; jdisc <= i__1; ++jdisc) { + iw = 0; + i__2 = *m; + for (je = 1; je <= i__2; ++je) { + if (iblock[je] != 0 && (w[je] >= wkill || iw == 0)) { + iw = je; + wkill = w[je]; + } +/* L110: */ + } + iblock[iw] = 0; +/* L120: */ + } + } +/* Now erase all eigenvalues with IBLOCK set to zero */ + im = 0; + i__1 = *m; + for (je = 1; je <= i__1; ++je) { + if (iblock[je] != 0) { + ++im; + w[im] = w[je]; + werr[im] = werr[je]; + indexw[im] = indexw[je]; + iblock[im] = iblock[je]; + } +/* L130: */ + } + *m = im; + } + if (idiscl < 0 || idiscu < 0) { + toofew = TRUE_; + } + } + + if (irange == 1 && *m != *n || irange == 3 && *m != *iu - *il + 1) { + toofew = TRUE_; + } +/* If ORDER='B', do nothing the eigenvalues are already sorted by */ +/* block. */ +/* If ORDER='E', sort the eigenvalues from smallest to largest */ + if (lsame_(order, "E") && *nsplit > 1) { + i__1 = *m - 1; + for (je = 1; je <= i__1; ++je) { + ie = 0; + tmp1 = w[je]; + i__2 = *m; + for (j = je + 1; j <= i__2; ++j) { + if (w[j] < tmp1) { + ie = j; + tmp1 = w[j]; + } +/* L140: */ + } + if (ie != 0) { + tmp2 = werr[ie]; + itmp1 = iblock[ie]; + itmp2 = indexw[ie]; + w[ie] = w[je]; + werr[ie] = werr[je]; + iblock[ie] = iblock[je]; + indexw[ie] = indexw[je]; + w[je] = tmp1; + werr[je] = tmp2; + iblock[je] = itmp1; + indexw[je] = itmp2; + } +/* L150: */ + } + } + + *info = 0; + if (ncnvrg) { + ++(*info); + } + if (toofew) { + *info += 2; + } + return 0; + +/* End of SLARRD */ + +} /* slarrd_ */ |