aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slag2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slag2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slag2.c')
-rw-r--r--contrib/libs/clapack/slag2.c356
1 files changed, 356 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slag2.c b/contrib/libs/clapack/slag2.c
new file mode 100644
index 0000000000..02ce782f24
--- /dev/null
+++ b/contrib/libs/clapack/slag2.c
@@ -0,0 +1,356 @@
+/* slag2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int slag2_(real *a, integer *lda, real *b, integer *ldb,
+ real *safmin, real *scale1, real *scale2, real *wr1, real *wr2, real *
+ wi)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset;
+ real r__1, r__2, r__3, r__4, r__5, r__6;
+
+ /* Builtin functions */
+ double sqrt(doublereal), r_sign(real *, real *);
+
+ /* Local variables */
+ real r__, c1, c2, c3, c4, c5, s1, s2, a11, a12, a21, a22, b11, b12, b22,
+ pp, qq, ss, as11, as12, as22, sum, abi22, diff, bmin, wbig, wabs,
+ wdet, binv11, binv22, discr, anorm, bnorm, bsize, shift, rtmin,
+ rtmax, wsize, ascale, bscale, wscale, safmax, wsmall;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
+/* problem A - w B, with scaling as necessary to avoid over-/underflow. */
+
+/* The scaling factor "s" results in a modified eigenvalue equation */
+
+/* s A - w B */
+
+/* where s is a non-negative scaling factor chosen so that w, w B, */
+/* and s A do not overflow and, if possible, do not underflow, either. */
+
+/* Arguments */
+/* ========= */
+
+/* A (input) REAL array, dimension (LDA, 2) */
+/* On entry, the 2 x 2 matrix A. It is assumed that its 1-norm */
+/* is less than 1/SAFMIN. Entries less than */
+/* sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= 2. */
+
+/* B (input) REAL array, dimension (LDB, 2) */
+/* On entry, the 2 x 2 upper triangular matrix B. It is */
+/* assumed that the one-norm of B is less than 1/SAFMIN. The */
+/* diagonals should be at least sqrt(SAFMIN) times the largest */
+/* element of B (in absolute value); if a diagonal is smaller */
+/* than that, then +/- sqrt(SAFMIN) will be used instead of */
+/* that diagonal. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= 2. */
+
+/* SAFMIN (input) REAL */
+/* The smallest positive number s.t. 1/SAFMIN does not */
+/* overflow. (This should always be SLAMCH('S') -- it is an */
+/* argument in order to avoid having to call SLAMCH frequently.) */
+
+/* SCALE1 (output) REAL */
+/* A scaling factor used to avoid over-/underflow in the */
+/* eigenvalue equation which defines the first eigenvalue. If */
+/* the eigenvalues are complex, then the eigenvalues are */
+/* ( WR1 +/- WI i ) / SCALE1 (which may lie outside the */
+/* exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
+/* will always be positive. If the eigenvalues are real, then */
+/* the first (real) eigenvalue is WR1 / SCALE1 , but this may */
+/* overflow or underflow, and in fact, SCALE1 may be zero or */
+/* less than the underflow threshhold if the exact eigenvalue */
+/* is sufficiently large. */
+
+/* SCALE2 (output) REAL */
+/* A scaling factor used to avoid over-/underflow in the */
+/* eigenvalue equation which defines the second eigenvalue. If */
+/* the eigenvalues are complex, then SCALE2=SCALE1. If the */
+/* eigenvalues are real, then the second (real) eigenvalue is */
+/* WR2 / SCALE2 , but this may overflow or underflow, and in */
+/* fact, SCALE2 may be zero or less than the underflow */
+/* threshhold if the exact eigenvalue is sufficiently large. */
+
+/* WR1 (output) REAL */
+/* If the eigenvalue is real, then WR1 is SCALE1 times the */
+/* eigenvalue closest to the (2,2) element of A B**(-1). If the */
+/* eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
+/* part of the eigenvalues. */
+
+/* WR2 (output) REAL */
+/* If the eigenvalue is real, then WR2 is SCALE2 times the */
+/* other eigenvalue. If the eigenvalue is complex, then */
+/* WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
+
+/* WI (output) REAL */
+/* If the eigenvalue is real, then WI is zero. If the */
+/* eigenvalue is complex, then WI is SCALE1 times the imaginary */
+/* part of the eigenvalues. WI will always be non-negative. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ rtmin = sqrt(*safmin);
+ rtmax = 1.f / rtmin;
+ safmax = 1.f / *safmin;
+
+/* Scale A */
+
+/* Computing MAX */
+ r__5 = (r__1 = a[a_dim1 + 1], dabs(r__1)) + (r__2 = a[a_dim1 + 2], dabs(
+ r__2)), r__6 = (r__3 = a[(a_dim1 << 1) + 1], dabs(r__3)) + (r__4 =
+ a[(a_dim1 << 1) + 2], dabs(r__4)), r__5 = max(r__5,r__6);
+ anorm = dmax(r__5,*safmin);
+ ascale = 1.f / anorm;
+ a11 = ascale * a[a_dim1 + 1];
+ a21 = ascale * a[a_dim1 + 2];
+ a12 = ascale * a[(a_dim1 << 1) + 1];
+ a22 = ascale * a[(a_dim1 << 1) + 2];
+
+/* Perturb B if necessary to insure non-singularity */
+
+ b11 = b[b_dim1 + 1];
+ b12 = b[(b_dim1 << 1) + 1];
+ b22 = b[(b_dim1 << 1) + 2];
+/* Computing MAX */
+ r__1 = dabs(b11), r__2 = dabs(b12), r__1 = max(r__1,r__2), r__2 = dabs(
+ b22), r__1 = max(r__1,r__2);
+ bmin = rtmin * dmax(r__1,rtmin);
+ if (dabs(b11) < bmin) {
+ b11 = r_sign(&bmin, &b11);
+ }
+ if (dabs(b22) < bmin) {
+ b22 = r_sign(&bmin, &b22);
+ }
+
+/* Scale B */
+
+/* Computing MAX */
+ r__1 = dabs(b11), r__2 = dabs(b12) + dabs(b22), r__1 = max(r__1,r__2);
+ bnorm = dmax(r__1,*safmin);
+/* Computing MAX */
+ r__1 = dabs(b11), r__2 = dabs(b22);
+ bsize = dmax(r__1,r__2);
+ bscale = 1.f / bsize;
+ b11 *= bscale;
+ b12 *= bscale;
+ b22 *= bscale;
+
+/* Compute larger eigenvalue by method described by C. van Loan */
+
+/* ( AS is A shifted by -SHIFT*B ) */
+
+ binv11 = 1.f / b11;
+ binv22 = 1.f / b22;
+ s1 = a11 * binv11;
+ s2 = a22 * binv22;
+ if (dabs(s1) <= dabs(s2)) {
+ as12 = a12 - s1 * b12;
+ as22 = a22 - s1 * b22;
+ ss = a21 * (binv11 * binv22);
+ abi22 = as22 * binv22 - ss * b12;
+ pp = abi22 * .5f;
+ shift = s1;
+ } else {
+ as12 = a12 - s2 * b12;
+ as11 = a11 - s2 * b11;
+ ss = a21 * (binv11 * binv22);
+ abi22 = -ss * b12;
+ pp = (as11 * binv11 + abi22) * .5f;
+ shift = s2;
+ }
+ qq = ss * as12;
+ if ((r__1 = pp * rtmin, dabs(r__1)) >= 1.f) {
+/* Computing 2nd power */
+ r__1 = rtmin * pp;
+ discr = r__1 * r__1 + qq * *safmin;
+ r__ = sqrt((dabs(discr))) * rtmax;
+ } else {
+/* Computing 2nd power */
+ r__1 = pp;
+ if (r__1 * r__1 + dabs(qq) <= *safmin) {
+/* Computing 2nd power */
+ r__1 = rtmax * pp;
+ discr = r__1 * r__1 + qq * safmax;
+ r__ = sqrt((dabs(discr))) * rtmin;
+ } else {
+/* Computing 2nd power */
+ r__1 = pp;
+ discr = r__1 * r__1 + qq;
+ r__ = sqrt((dabs(discr)));
+ }
+ }
+
+/* Note: the test of R in the following IF is to cover the case when */
+/* DISCR is small and negative and is flushed to zero during */
+/* the calculation of R. On machines which have a consistent */
+/* flush-to-zero threshhold and handle numbers above that */
+/* threshhold correctly, it would not be necessary. */
+
+ if (discr >= 0.f || r__ == 0.f) {
+ sum = pp + r_sign(&r__, &pp);
+ diff = pp - r_sign(&r__, &pp);
+ wbig = shift + sum;
+
+/* Compute smaller eigenvalue */
+
+ wsmall = shift + diff;
+/* Computing MAX */
+ r__1 = dabs(wsmall);
+ if (dabs(wbig) * .5f > dmax(r__1,*safmin)) {
+ wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);
+ wsmall = wdet / wbig;
+ }
+
+/* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) */
+/* for WR1. */
+
+ if (pp > abi22) {
+ *wr1 = dmin(wbig,wsmall);
+ *wr2 = dmax(wbig,wsmall);
+ } else {
+ *wr1 = dmax(wbig,wsmall);
+ *wr2 = dmin(wbig,wsmall);
+ }
+ *wi = 0.f;
+ } else {
+
+/* Complex eigenvalues */
+
+ *wr1 = shift + pp;
+ *wr2 = *wr1;
+ *wi = r__;
+ }
+
+/* Further scaling to avoid underflow and overflow in computing */
+/* SCALE1 and overflow in computing w*B. */
+
+/* This scale factor (WSCALE) is bounded from above using C1 and C2, */
+/* and from below using C3 and C4. */
+/* C1 implements the condition s A must never overflow. */
+/* C2 implements the condition w B must never overflow. */
+/* C3, with C2, */
+/* implement the condition that s A - w B must never overflow. */
+/* C4 implements the condition s should not underflow. */
+/* C5 implements the condition max(s,|w|) should be at least 2. */
+
+ c1 = bsize * (*safmin * dmax(1.f,ascale));
+ c2 = *safmin * dmax(1.f,bnorm);
+ c3 = bsize * *safmin;
+ if (ascale <= 1.f && bsize <= 1.f) {
+/* Computing MIN */
+ r__1 = 1.f, r__2 = ascale / *safmin * bsize;
+ c4 = dmin(r__1,r__2);
+ } else {
+ c4 = 1.f;
+ }
+ if (ascale <= 1.f || bsize <= 1.f) {
+/* Computing MIN */
+ r__1 = 1.f, r__2 = ascale * bsize;
+ c5 = dmin(r__1,r__2);
+ } else {
+ c5 = 1.f;
+ }
+
+/* Scale first eigenvalue */
+
+ wabs = dabs(*wr1) + dabs(*wi);
+/* Computing MAX */
+/* Computing MIN */
+ r__3 = c4, r__4 = dmax(wabs,c5) * .5f;
+ r__1 = max(*safmin,c1), r__2 = (wabs * c2 + c3) * 1.0000100000000001f,
+ r__1 = max(r__1,r__2), r__2 = dmin(r__3,r__4);
+ wsize = dmax(r__1,r__2);
+ if (wsize != 1.f) {
+ wscale = 1.f / wsize;
+ if (wsize > 1.f) {
+ *scale1 = dmax(ascale,bsize) * wscale * dmin(ascale,bsize);
+ } else {
+ *scale1 = dmin(ascale,bsize) * wscale * dmax(ascale,bsize);
+ }
+ *wr1 *= wscale;
+ if (*wi != 0.f) {
+ *wi *= wscale;
+ *wr2 = *wr1;
+ *scale2 = *scale1;
+ }
+ } else {
+ *scale1 = ascale * bsize;
+ *scale2 = *scale1;
+ }
+
+/* Scale second eigenvalue (if real) */
+
+ if (*wi == 0.f) {
+/* Computing MAX */
+/* Computing MIN */
+/* Computing MAX */
+ r__5 = dabs(*wr2);
+ r__3 = c4, r__4 = dmax(r__5,c5) * .5f;
+ r__1 = max(*safmin,c1), r__2 = (dabs(*wr2) * c2 + c3) *
+ 1.0000100000000001f, r__1 = max(r__1,r__2), r__2 = dmin(r__3,
+ r__4);
+ wsize = dmax(r__1,r__2);
+ if (wsize != 1.f) {
+ wscale = 1.f / wsize;
+ if (wsize > 1.f) {
+ *scale2 = dmax(ascale,bsize) * wscale * dmin(ascale,bsize);
+ } else {
+ *scale2 = dmin(ascale,bsize) * wscale * dmax(ascale,bsize);
+ }
+ *wr2 *= wscale;
+ } else {
+ *scale2 = ascale * bsize;
+ }
+ }
+
+/* End of SLAG2 */
+
+ return 0;
+} /* slag2_ */