diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slaed2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slaed2.c')
-rw-r--r-- | contrib/libs/clapack/slaed2.c | 530 |
1 files changed, 530 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slaed2.c b/contrib/libs/clapack/slaed2.c new file mode 100644 index 0000000000..ad04cf5b03 --- /dev/null +++ b/contrib/libs/clapack/slaed2.c @@ -0,0 +1,530 @@ +/* slaed2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static real c_b3 = -1.f; +static integer c__1 = 1; + +/* Subroutine */ int slaed2_(integer *k, integer *n, integer *n1, real *d__, + real *q, integer *ldq, integer *indxq, real *rho, real *z__, real * + dlamda, real *w, real *q2, integer *indx, integer *indxc, integer * + indxp, integer *coltyp, integer *info) +{ + /* System generated locals */ + integer q_dim1, q_offset, i__1, i__2; + real r__1, r__2, r__3, r__4; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + real c__; + integer i__, j; + real s, t; + integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1; + real eps, tau, tol; + integer psm[4], imax, jmax, ctot[4]; + extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, + integer *, real *, real *), sscal_(integer *, real *, real *, + integer *), scopy_(integer *, real *, integer *, real *, integer * +); + extern doublereal slapy2_(real *, real *), slamch_(char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer isamax_(integer *, real *, integer *); + extern /* Subroutine */ int slamrg_(integer *, integer *, real *, integer + *, integer *, integer *), slacpy_(char *, integer *, integer *, + real *, integer *, real *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SLAED2 merges the two sets of eigenvalues together into a single */ +/* sorted set. Then it tries to deflate the size of the problem. */ +/* There are two ways in which deflation can occur: when two or more */ +/* eigenvalues are close together or if there is a tiny entry in the */ +/* Z vector. For each such occurrence the order of the related secular */ +/* equation problem is reduced by one. */ + +/* Arguments */ +/* ========= */ + +/* K (output) INTEGER */ +/* The number of non-deflated eigenvalues, and the order of the */ +/* related secular equation. 0 <= K <=N. */ + +/* N (input) INTEGER */ +/* The dimension of the symmetric tridiagonal matrix. N >= 0. */ + +/* N1 (input) INTEGER */ +/* The location of the last eigenvalue in the leading sub-matrix. */ +/* min(1,N) <= N1 <= N/2. */ + +/* D (input/output) REAL array, dimension (N) */ +/* On entry, D contains the eigenvalues of the two submatrices to */ +/* be combined. */ +/* On exit, D contains the trailing (N-K) updated eigenvalues */ +/* (those which were deflated) sorted into increasing order. */ + +/* Q (input/output) REAL array, dimension (LDQ, N) */ +/* On entry, Q contains the eigenvectors of two submatrices in */ +/* the two square blocks with corners at (1,1), (N1,N1) */ +/* and (N1+1, N1+1), (N,N). */ +/* On exit, Q contains the trailing (N-K) updated eigenvectors */ +/* (those which were deflated) in its last N-K columns. */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. LDQ >= max(1,N). */ + +/* INDXQ (input/output) INTEGER array, dimension (N) */ +/* The permutation which separately sorts the two sub-problems */ +/* in D into ascending order. Note that elements in the second */ +/* half of this permutation must first have N1 added to their */ +/* values. Destroyed on exit. */ + +/* RHO (input/output) REAL */ +/* On entry, the off-diagonal element associated with the rank-1 */ +/* cut which originally split the two submatrices which are now */ +/* being recombined. */ +/* On exit, RHO has been modified to the value required by */ +/* SLAED3. */ + +/* Z (input) REAL array, dimension (N) */ +/* On entry, Z contains the updating vector (the last */ +/* row of the first sub-eigenvector matrix and the first row of */ +/* the second sub-eigenvector matrix). */ +/* On exit, the contents of Z have been destroyed by the updating */ +/* process. */ + +/* DLAMDA (output) REAL array, dimension (N) */ +/* A copy of the first K eigenvalues which will be used by */ +/* SLAED3 to form the secular equation. */ + +/* W (output) REAL array, dimension (N) */ +/* The first k values of the final deflation-altered z-vector */ +/* which will be passed to SLAED3. */ + +/* Q2 (output) REAL array, dimension (N1**2+(N-N1)**2) */ +/* A copy of the first K eigenvectors which will be used by */ +/* SLAED3 in a matrix multiply (SGEMM) to solve for the new */ +/* eigenvectors. */ + +/* INDX (workspace) INTEGER array, dimension (N) */ +/* The permutation used to sort the contents of DLAMDA into */ +/* ascending order. */ + +/* INDXC (output) INTEGER array, dimension (N) */ +/* The permutation used to arrange the columns of the deflated */ +/* Q matrix into three groups: the first group contains non-zero */ +/* elements only at and above N1, the second contains */ +/* non-zero elements only below N1, and the third is dense. */ + +/* INDXP (workspace) INTEGER array, dimension (N) */ +/* The permutation used to place deflated values of D at the end */ +/* of the array. INDXP(1:K) points to the nondeflated D-values */ +/* and INDXP(K+1:N) points to the deflated eigenvalues. */ + +/* COLTYP (workspace/output) INTEGER array, dimension (N) */ +/* During execution, a label which will indicate which of the */ +/* following types a column in the Q2 matrix is: */ +/* 1 : non-zero in the upper half only; */ +/* 2 : dense; */ +/* 3 : non-zero in the lower half only; */ +/* 4 : deflated. */ +/* On exit, COLTYP(i) is the number of columns of type i, */ +/* for i=1 to 4 only. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Jeff Rutter, Computer Science Division, University of California */ +/* at Berkeley, USA */ +/* Modified by Francoise Tisseur, University of Tennessee. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --d__; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + --indxq; + --z__; + --dlamda; + --w; + --q2; + --indx; + --indxc; + --indxp; + --coltyp; + + /* Function Body */ + *info = 0; + + if (*n < 0) { + *info = -2; + } else if (*ldq < max(1,*n)) { + *info = -6; + } else /* if(complicated condition) */ { +/* Computing MIN */ + i__1 = 1, i__2 = *n / 2; + if (min(i__1,i__2) > *n1 || *n / 2 < *n1) { + *info = -3; + } + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("SLAED2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + n2 = *n - *n1; + n1p1 = *n1 + 1; + + if (*rho < 0.f) { + sscal_(&n2, &c_b3, &z__[n1p1], &c__1); + } + +/* Normalize z so that norm(z) = 1. Since z is the concatenation of */ +/* two normalized vectors, norm2(z) = sqrt(2). */ + + t = 1.f / sqrt(2.f); + sscal_(n, &t, &z__[1], &c__1); + +/* RHO = ABS( norm(z)**2 * RHO ) */ + + *rho = (r__1 = *rho * 2.f, dabs(r__1)); + +/* Sort the eigenvalues into increasing order */ + + i__1 = *n; + for (i__ = n1p1; i__ <= i__1; ++i__) { + indxq[i__] += *n1; +/* L10: */ + } + +/* re-integrate the deflated parts from the last pass */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + dlamda[i__] = d__[indxq[i__]]; +/* L20: */ + } + slamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]); + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + indx[i__] = indxq[indxc[i__]]; +/* L30: */ + } + +/* Calculate the allowable deflation tolerance */ + + imax = isamax_(n, &z__[1], &c__1); + jmax = isamax_(n, &d__[1], &c__1); + eps = slamch_("Epsilon"); +/* Computing MAX */ + r__3 = (r__1 = d__[jmax], dabs(r__1)), r__4 = (r__2 = z__[imax], dabs( + r__2)); + tol = eps * 8.f * dmax(r__3,r__4); + +/* If the rank-1 modifier is small enough, no more needs to be done */ +/* except to reorganize Q so that its columns correspond with the */ +/* elements in D. */ + + if (*rho * (r__1 = z__[imax], dabs(r__1)) <= tol) { + *k = 0; + iq2 = 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__ = indx[j]; + scopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1); + dlamda[j] = d__[i__]; + iq2 += *n; +/* L40: */ + } + slacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq); + scopy_(n, &dlamda[1], &c__1, &d__[1], &c__1); + goto L190; + } + +/* If there are multiple eigenvalues then the problem deflates. Here */ +/* the number of equal eigenvalues are found. As each equal */ +/* eigenvalue is found, an elementary reflector is computed to rotate */ +/* the corresponding eigensubspace so that the corresponding */ +/* components of Z are zero in this new basis. */ + + i__1 = *n1; + for (i__ = 1; i__ <= i__1; ++i__) { + coltyp[i__] = 1; +/* L50: */ + } + i__1 = *n; + for (i__ = n1p1; i__ <= i__1; ++i__) { + coltyp[i__] = 3; +/* L60: */ + } + + + *k = 0; + k2 = *n + 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + nj = indx[j]; + if (*rho * (r__1 = z__[nj], dabs(r__1)) <= tol) { + +/* Deflate due to small z component. */ + + --k2; + coltyp[nj] = 4; + indxp[k2] = nj; + if (j == *n) { + goto L100; + } + } else { + pj = nj; + goto L80; + } +/* L70: */ + } +L80: + ++j; + nj = indx[j]; + if (j > *n) { + goto L100; + } + if (*rho * (r__1 = z__[nj], dabs(r__1)) <= tol) { + +/* Deflate due to small z component. */ + + --k2; + coltyp[nj] = 4; + indxp[k2] = nj; + } else { + +/* Check if eigenvalues are close enough to allow deflation. */ + + s = z__[pj]; + c__ = z__[nj]; + +/* Find sqrt(a**2+b**2) without overflow or */ +/* destructive underflow. */ + + tau = slapy2_(&c__, &s); + t = d__[nj] - d__[pj]; + c__ /= tau; + s = -s / tau; + if ((r__1 = t * c__ * s, dabs(r__1)) <= tol) { + +/* Deflation is possible. */ + + z__[nj] = tau; + z__[pj] = 0.f; + if (coltyp[nj] != coltyp[pj]) { + coltyp[nj] = 2; + } + coltyp[pj] = 4; + srot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, & + c__, &s); +/* Computing 2nd power */ + r__1 = c__; +/* Computing 2nd power */ + r__2 = s; + t = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2); +/* Computing 2nd power */ + r__1 = s; +/* Computing 2nd power */ + r__2 = c__; + d__[nj] = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2); + d__[pj] = t; + --k2; + i__ = 1; +L90: + if (k2 + i__ <= *n) { + if (d__[pj] < d__[indxp[k2 + i__]]) { + indxp[k2 + i__ - 1] = indxp[k2 + i__]; + indxp[k2 + i__] = pj; + ++i__; + goto L90; + } else { + indxp[k2 + i__ - 1] = pj; + } + } else { + indxp[k2 + i__ - 1] = pj; + } + pj = nj; + } else { + ++(*k); + dlamda[*k] = d__[pj]; + w[*k] = z__[pj]; + indxp[*k] = pj; + pj = nj; + } + } + goto L80; +L100: + +/* Record the last eigenvalue. */ + + ++(*k); + dlamda[*k] = d__[pj]; + w[*k] = z__[pj]; + indxp[*k] = pj; + +/* Count up the total number of the various types of columns, then */ +/* form a permutation which positions the four column types into */ +/* four uniform groups (although one or more of these groups may be */ +/* empty). */ + + for (j = 1; j <= 4; ++j) { + ctot[j - 1] = 0; +/* L110: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + ct = coltyp[j]; + ++ctot[ct - 1]; +/* L120: */ + } + +/* PSM(*) = Position in SubMatrix (of types 1 through 4) */ + + psm[0] = 1; + psm[1] = ctot[0] + 1; + psm[2] = psm[1] + ctot[1]; + psm[3] = psm[2] + ctot[2]; + *k = *n - ctot[3]; + +/* Fill out the INDXC array so that the permutation which it induces */ +/* will place all type-1 columns first, all type-2 columns next, */ +/* then all type-3's, and finally all type-4's. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + js = indxp[j]; + ct = coltyp[js]; + indx[psm[ct - 1]] = js; + indxc[psm[ct - 1]] = j; + ++psm[ct - 1]; +/* L130: */ + } + +/* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */ +/* and Q2 respectively. The eigenvalues/vectors which were not */ +/* deflated go into the first K slots of DLAMDA and Q2 respectively, */ +/* while those which were deflated go into the last N - K slots. */ + + i__ = 1; + iq1 = 1; + iq2 = (ctot[0] + ctot[1]) * *n1 + 1; + i__1 = ctot[0]; + for (j = 1; j <= i__1; ++j) { + js = indx[i__]; + scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1); + z__[i__] = d__[js]; + ++i__; + iq1 += *n1; +/* L140: */ + } + + i__1 = ctot[1]; + for (j = 1; j <= i__1; ++j) { + js = indx[i__]; + scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1); + scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1); + z__[i__] = d__[js]; + ++i__; + iq1 += *n1; + iq2 += n2; +/* L150: */ + } + + i__1 = ctot[2]; + for (j = 1; j <= i__1; ++j) { + js = indx[i__]; + scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1); + z__[i__] = d__[js]; + ++i__; + iq2 += n2; +/* L160: */ + } + + iq1 = iq2; + i__1 = ctot[3]; + for (j = 1; j <= i__1; ++j) { + js = indx[i__]; + scopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1); + iq2 += *n; + z__[i__] = d__[js]; + ++i__; +/* L170: */ + } + +/* The deflated eigenvalues and their corresponding vectors go back */ +/* into the last N - K slots of D and Q respectively. */ + + slacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq); + i__1 = *n - *k; + scopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1); + +/* Copy CTOT into COLTYP for referencing in SLAED3. */ + + for (j = 1; j <= 4; ++j) { + coltyp[j] = ctot[j - 1]; +/* L180: */ + } + +L190: + return 0; + +/* End of SLAED2 */ + +} /* slaed2_ */ |