aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sla_syrfsx_extended.c
diff options
context:
space:
mode:
authormaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 12:29:46 +0300
committermaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 13:14:22 +0300
commit9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch)
treea8fb3181d5947c0d78cf402aa56e686130179049 /contrib/libs/clapack/sla_syrfsx_extended.c
parenta44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff)
downloadydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz
publishFullContrib: true for ydb
<HIDDEN_URL> commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/libs/clapack/sla_syrfsx_extended.c')
-rw-r--r--contrib/libs/clapack/sla_syrfsx_extended.c598
1 files changed, 598 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sla_syrfsx_extended.c b/contrib/libs/clapack/sla_syrfsx_extended.c
new file mode 100644
index 0000000000..e036c7da44
--- /dev/null
+++ b/contrib/libs/clapack/sla_syrfsx_extended.c
@@ -0,0 +1,598 @@
+/* sla_syrfsx_extended.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static real c_b9 = -1.f;
+static real c_b11 = 1.f;
+
+/* Subroutine */ int sla_syrfsx_extended__(integer *prec_type__, char *uplo,
+ integer *n, integer *nrhs, real *a, integer *lda, real *af, integer *
+ ldaf, integer *ipiv, logical *colequ, real *c__, real *b, integer *
+ ldb, real *y, integer *ldy, real *berr_out__, integer *n_norms__,
+ real *err_bnds_norm__, real *err_bnds_comp__, real *res, real *ayb,
+ real *dy, real *y_tail__, real *rcond, integer *ithresh, real *
+ rthresh, real *dz_ub__, logical *ignore_cwise__, integer *info,
+ ftnlen uplo_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1,
+ y_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
+ err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3;
+ real r__1, r__2;
+
+ /* Local variables */
+ real dxratmax, dzratmax;
+ integer i__, j;
+ logical incr_prec__;
+ extern /* Subroutine */ int sla_syamv__(integer *, integer *, real *,
+ real *, integer *, real *, integer *, real *, real *, integer *);
+ real prev_dz_z__, yk, final_dx_x__, final_dz_z__;
+ extern /* Subroutine */ int sla_wwaddw__(integer *, real *, real *, real *
+ );
+ real prevnormdx;
+ integer cnt;
+ real dyk, eps, incr_thresh__, dx_x__, dz_z__, ymin;
+ extern /* Subroutine */ int sla_lin_berr__(integer *, integer *, integer *
+ , real *, real *, real *);
+ integer y_prec_state__, uplo2;
+ extern /* Subroutine */ int blas_ssymv_x__(integer *, integer *, real *,
+ real *, integer *, real *, integer *, real *, real *, integer *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ real dxrat, dzrat;
+ extern /* Subroutine */ int blas_ssymv2_x__(integer *, integer *, real *,
+ real *, integer *, real *, real *, integer *, real *, real *,
+ integer *, integer *), scopy_(integer *, real *, integer *, real *
+, integer *);
+ real normx, normy;
+ extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
+ real *, integer *), ssymv_(char *, integer *, real *, real *,
+ integer *, real *, integer *, real *, real *, integer *);
+ extern doublereal slamch_(char *);
+ real normdx;
+ extern /* Subroutine */ int ssytrs_(char *, integer *, integer *, real *,
+ integer *, integer *, real *, integer *, integer *);
+ real hugeval;
+ extern integer ilauplo_(char *);
+ integer x_state__, z_state__;
+
+
+/* -- LAPACK routine (version 3.2.1) -- */
+/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
+/* -- Jason Riedy of Univ. of California Berkeley. -- */
+/* -- April 2009 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley and NAG Ltd. -- */
+
+/* .. */
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SLA_SYRFSX_EXTENDED improves the computed solution to a system of */
+/* linear equations by performing extra-precise iterative refinement */
+/* and provides error bounds and backward error estimates for the solution. */
+/* This subroutine is called by SSYRFSX to perform iterative refinement. */
+/* In addition to normwise error bound, the code provides maximum */
+/* componentwise error bound if possible. See comments for ERR_BNDS_NORM */
+/* and ERR_BNDS_COMP for details of the error bounds. Note that this */
+/* subroutine is only resonsible for setting the second fields of */
+/* ERR_BNDS_NORM and ERR_BNDS_COMP. */
+
+/* Arguments */
+/* ========= */
+
+/* PREC_TYPE (input) INTEGER */
+/* Specifies the intermediate precision to be used in refinement. */
+/* The value is defined by ILAPREC(P) where P is a CHARACTER and */
+/* P = 'S': Single */
+/* = 'D': Double */
+/* = 'I': Indigenous */
+/* = 'X', 'E': Extra */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The number of linear equations, i.e., the order of the */
+/* matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right-hand-sides, i.e., the number of columns of the */
+/* matrix B. */
+
+/* A (input) REAL array, dimension (LDA,N) */
+/* On entry, the N-by-N matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* AF (input) REAL array, dimension (LDAF,N) */
+/* The block diagonal matrix D and the multipliers used to */
+/* obtain the factor U or L as computed by SSYTRF. */
+
+/* LDAF (input) INTEGER */
+/* The leading dimension of the array AF. LDAF >= max(1,N). */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D */
+/* as determined by SSYTRF. */
+
+/* COLEQU (input) LOGICAL */
+/* If .TRUE. then column equilibration was done to A before calling */
+/* this routine. This is needed to compute the solution and error */
+/* bounds correctly. */
+
+/* C (input) REAL array, dimension (N) */
+/* The column scale factors for A. If COLEQU = .FALSE., C */
+/* is not accessed. If C is input, each element of C should be a power */
+/* of the radix to ensure a reliable solution and error estimates. */
+/* Scaling by powers of the radix does not cause rounding errors unless */
+/* the result underflows or overflows. Rounding errors during scaling */
+/* lead to refining with a matrix that is not equivalent to the */
+/* input matrix, producing error estimates that may not be */
+/* reliable. */
+
+/* B (input) REAL array, dimension (LDB,NRHS) */
+/* The right-hand-side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* Y (input/output) REAL array, dimension (LDY,NRHS) */
+/* On entry, the solution matrix X, as computed by SSYTRS. */
+/* On exit, the improved solution matrix Y. */
+
+/* LDY (input) INTEGER */
+/* The leading dimension of the array Y. LDY >= max(1,N). */
+
+/* BERR_OUT (output) REAL array, dimension (NRHS) */
+/* On exit, BERR_OUT(j) contains the componentwise relative backward */
+/* error for right-hand-side j from the formula */
+/* max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
+/* where abs(Z) is the componentwise absolute value of the matrix */
+/* or vector Z. This is computed by SLA_LIN_BERR. */
+
+/* N_NORMS (input) INTEGER */
+/* Determines which error bounds to return (see ERR_BNDS_NORM */
+/* and ERR_BNDS_COMP). */
+/* If N_NORMS >= 1 return normwise error bounds. */
+/* If N_NORMS >= 2 return componentwise error bounds. */
+
+/* ERR_BNDS_NORM (input/output) REAL array, dimension (NRHS, N_ERR_BNDS) */
+/* For each right-hand side, this array contains information about */
+/* various error bounds and condition numbers corresponding to the */
+/* normwise relative error, which is defined as follows: */
+
+/* Normwise relative error in the ith solution vector: */
+/* max_j (abs(XTRUE(j,i) - X(j,i))) */
+/* ------------------------------ */
+/* max_j abs(X(j,i)) */
+
+/* The array is indexed by the type of error information as described */
+/* below. There currently are up to three pieces of information */
+/* returned. */
+
+/* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
+/* right-hand side. */
+
+/* The second index in ERR_BNDS_NORM(:,err) contains the following */
+/* three fields: */
+/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
+/* reciprocal condition number is less than the threshold */
+/* sqrt(n) * slamch('Epsilon'). */
+
+/* err = 2 "Guaranteed" error bound: The estimated forward error, */
+/* almost certainly within a factor of 10 of the true error */
+/* so long as the next entry is greater than the threshold */
+/* sqrt(n) * slamch('Epsilon'). This error bound should only */
+/* be trusted if the previous boolean is true. */
+
+/* err = 3 Reciprocal condition number: Estimated normwise */
+/* reciprocal condition number. Compared with the threshold */
+/* sqrt(n) * slamch('Epsilon') to determine if the error */
+/* estimate is "guaranteed". These reciprocal condition */
+/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
+/* appropriately scaled matrix Z. */
+/* Let Z = S*A, where S scales each row by a power of the */
+/* radix so all absolute row sums of Z are approximately 1. */
+
+/* This subroutine is only responsible for setting the second field */
+/* above. */
+/* See Lapack Working Note 165 for further details and extra */
+/* cautions. */
+
+/* ERR_BNDS_COMP (input/output) REAL array, dimension (NRHS, N_ERR_BNDS) */
+/* For each right-hand side, this array contains information about */
+/* various error bounds and condition numbers corresponding to the */
+/* componentwise relative error, which is defined as follows: */
+
+/* Componentwise relative error in the ith solution vector: */
+/* abs(XTRUE(j,i) - X(j,i)) */
+/* max_j ---------------------- */
+/* abs(X(j,i)) */
+
+/* The array is indexed by the right-hand side i (on which the */
+/* componentwise relative error depends), and the type of error */
+/* information as described below. There currently are up to three */
+/* pieces of information returned for each right-hand side. If */
+/* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
+/* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */
+/* the first (:,N_ERR_BNDS) entries are returned. */
+
+/* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
+/* right-hand side. */
+
+/* The second index in ERR_BNDS_COMP(:,err) contains the following */
+/* three fields: */
+/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
+/* reciprocal condition number is less than the threshold */
+/* sqrt(n) * slamch('Epsilon'). */
+
+/* err = 2 "Guaranteed" error bound: The estimated forward error, */
+/* almost certainly within a factor of 10 of the true error */
+/* so long as the next entry is greater than the threshold */
+/* sqrt(n) * slamch('Epsilon'). This error bound should only */
+/* be trusted if the previous boolean is true. */
+
+/* err = 3 Reciprocal condition number: Estimated componentwise */
+/* reciprocal condition number. Compared with the threshold */
+/* sqrt(n) * slamch('Epsilon') to determine if the error */
+/* estimate is "guaranteed". These reciprocal condition */
+/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
+/* appropriately scaled matrix Z. */
+/* Let Z = S*(A*diag(x)), where x is the solution for the */
+/* current right-hand side and S scales each row of */
+/* A*diag(x) by a power of the radix so all absolute row */
+/* sums of Z are approximately 1. */
+
+/* This subroutine is only responsible for setting the second field */
+/* above. */
+/* See Lapack Working Note 165 for further details and extra */
+/* cautions. */
+
+/* RES (input) REAL array, dimension (N) */
+/* Workspace to hold the intermediate residual. */
+
+/* AYB (input) REAL array, dimension (N) */
+/* Workspace. This can be the same workspace passed for Y_TAIL. */
+
+/* DY (input) REAL array, dimension (N) */
+/* Workspace to hold the intermediate solution. */
+
+/* Y_TAIL (input) REAL array, dimension (N) */
+/* Workspace to hold the trailing bits of the intermediate solution. */
+
+/* RCOND (input) REAL */
+/* Reciprocal scaled condition number. This is an estimate of the */
+/* reciprocal Skeel condition number of the matrix A after */
+/* equilibration (if done). If this is less than the machine */
+/* precision (in particular, if it is zero), the matrix is singular */
+/* to working precision. Note that the error may still be small even */
+/* if this number is very small and the matrix appears ill- */
+/* conditioned. */
+
+/* ITHRESH (input) INTEGER */
+/* The maximum number of residual computations allowed for */
+/* refinement. The default is 10. For 'aggressive' set to 100 to */
+/* permit convergence using approximate factorizations or */
+/* factorizations other than LU. If the factorization uses a */
+/* technique other than Gaussian elimination, the guarantees in */
+/* ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */
+
+/* RTHRESH (input) REAL */
+/* Determines when to stop refinement if the error estimate stops */
+/* decreasing. Refinement will stop when the next solution no longer */
+/* satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
+/* the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
+/* default value is 0.5. For 'aggressive' set to 0.9 to permit */
+/* convergence on extremely ill-conditioned matrices. See LAWN 165 */
+/* for more details. */
+
+/* DZ_UB (input) REAL */
+/* Determines when to start considering componentwise convergence. */
+/* Componentwise convergence is only considered after each component */
+/* of the solution Y is stable, which we definte as the relative */
+/* change in each component being less than DZ_UB. The default value */
+/* is 0.25, requiring the first bit to be stable. See LAWN 165 for */
+/* more details. */
+
+/* IGNORE_CWISE (input) LOGICAL */
+/* If .TRUE. then ignore componentwise convergence. Default value */
+/* is .FALSE.. */
+
+/* INFO (output) INTEGER */
+/* = 0: Successful exit. */
+/* < 0: if INFO = -i, the ith argument to SSYTRS had an illegal */
+/* value */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. Parameters .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ err_bnds_comp_dim1 = *nrhs;
+ err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
+ err_bnds_comp__ -= err_bnds_comp_offset;
+ err_bnds_norm_dim1 = *nrhs;
+ err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
+ err_bnds_norm__ -= err_bnds_norm_offset;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ af_dim1 = *ldaf;
+ af_offset = 1 + af_dim1;
+ af -= af_offset;
+ --ipiv;
+ --c__;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ y_dim1 = *ldy;
+ y_offset = 1 + y_dim1;
+ y -= y_offset;
+ --berr_out__;
+ --res;
+ --ayb;
+ --dy;
+ --y_tail__;
+
+ /* Function Body */
+ if (*info != 0) {
+ return 0;
+ }
+ eps = slamch_("Epsilon");
+ hugeval = slamch_("Overflow");
+/* Force HUGEVAL to Inf */
+ hugeval *= hugeval;
+/* Using HUGEVAL may lead to spurious underflows. */
+ incr_thresh__ = (real) (*n) * eps;
+ if (lsame_(uplo, "L")) {
+ uplo2 = ilauplo_("L");
+ } else {
+ uplo2 = ilauplo_("U");
+ }
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ y_prec_state__ = 1;
+ if (y_prec_state__ == 2) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y_tail__[i__] = 0.f;
+ }
+ }
+ dxrat = 0.f;
+ dxratmax = 0.f;
+ dzrat = 0.f;
+ dzratmax = 0.f;
+ final_dx_x__ = hugeval;
+ final_dz_z__ = hugeval;
+ prevnormdx = hugeval;
+ prev_dz_z__ = hugeval;
+ dz_z__ = hugeval;
+ dx_x__ = hugeval;
+ x_state__ = 1;
+ z_state__ = 0;
+ incr_prec__ = FALSE_;
+ i__2 = *ithresh;
+ for (cnt = 1; cnt <= i__2; ++cnt) {
+
+/* Compute residual RES = B_s - op(A_s) * Y, */
+/* op(A) = A, A**T, or A**H depending on TRANS (and type). */
+
+ scopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
+ if (y_prec_state__ == 0) {
+ ssymv_(uplo, n, &c_b9, &a[a_offset], lda, &y[j * y_dim1 + 1],
+ &c__1, &c_b11, &res[1], &c__1);
+ } else if (y_prec_state__ == 1) {
+ blas_ssymv_x__(&uplo2, n, &c_b9, &a[a_offset], lda, &y[j *
+ y_dim1 + 1], &c__1, &c_b11, &res[1], &c__1,
+ prec_type__);
+ } else {
+ blas_ssymv2_x__(&uplo2, n, &c_b9, &a[a_offset], lda, &y[j *
+ y_dim1 + 1], &y_tail__[1], &c__1, &c_b11, &res[1], &
+ c__1, prec_type__);
+ }
+/* XXX: RES is no longer needed. */
+ scopy_(n, &res[1], &c__1, &dy[1], &c__1);
+ ssytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &dy[1], n,
+ info);
+
+/* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
+
+ normx = 0.f;
+ normy = 0.f;
+ normdx = 0.f;
+ dz_z__ = 0.f;
+ ymin = hugeval;
+ i__3 = *n;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ yk = (r__1 = y[i__ + j * y_dim1], dabs(r__1));
+ dyk = (r__1 = dy[i__], dabs(r__1));
+ if (yk != 0.f) {
+/* Computing MAX */
+ r__1 = dz_z__, r__2 = dyk / yk;
+ dz_z__ = dmax(r__1,r__2);
+ } else if (dyk != 0.f) {
+ dz_z__ = hugeval;
+ }
+ ymin = dmin(ymin,yk);
+ normy = dmax(normy,yk);
+ if (*colequ) {
+/* Computing MAX */
+ r__1 = normx, r__2 = yk * c__[i__];
+ normx = dmax(r__1,r__2);
+/* Computing MAX */
+ r__1 = normdx, r__2 = dyk * c__[i__];
+ normdx = dmax(r__1,r__2);
+ } else {
+ normx = normy;
+ normdx = dmax(normdx,dyk);
+ }
+ }
+ if (normx != 0.f) {
+ dx_x__ = normdx / normx;
+ } else if (normdx == 0.f) {
+ dx_x__ = 0.f;
+ } else {
+ dx_x__ = hugeval;
+ }
+ dxrat = normdx / prevnormdx;
+ dzrat = dz_z__ / prev_dz_z__;
+
+/* Check termination criteria. */
+
+ if (ymin * *rcond < incr_thresh__ * normy && y_prec_state__ < 2) {
+ incr_prec__ = TRUE_;
+ }
+ if (x_state__ == 3 && dxrat <= *rthresh) {
+ x_state__ = 1;
+ }
+ if (x_state__ == 1) {
+ if (dx_x__ <= eps) {
+ x_state__ = 2;
+ } else if (dxrat > *rthresh) {
+ if (y_prec_state__ != 2) {
+ incr_prec__ = TRUE_;
+ } else {
+ x_state__ = 3;
+ }
+ } else {
+ if (dxrat > dxratmax) {
+ dxratmax = dxrat;
+ }
+ }
+ if (x_state__ > 1) {
+ final_dx_x__ = dx_x__;
+ }
+ }
+ if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
+ z_state__ = 1;
+ }
+ if (z_state__ == 3 && dzrat <= *rthresh) {
+ z_state__ = 1;
+ }
+ if (z_state__ == 1) {
+ if (dz_z__ <= eps) {
+ z_state__ = 2;
+ } else if (dz_z__ > *dz_ub__) {
+ z_state__ = 0;
+ dzratmax = 0.f;
+ final_dz_z__ = hugeval;
+ } else if (dzrat > *rthresh) {
+ if (y_prec_state__ != 2) {
+ incr_prec__ = TRUE_;
+ } else {
+ z_state__ = 3;
+ }
+ } else {
+ if (dzrat > dzratmax) {
+ dzratmax = dzrat;
+ }
+ }
+ if (z_state__ > 1) {
+ final_dz_z__ = dz_z__;
+ }
+ }
+ if (x_state__ != 1 && (*ignore_cwise__ || z_state__ != 1)) {
+ goto L666;
+ }
+ if (incr_prec__) {
+ incr_prec__ = FALSE_;
+ ++y_prec_state__;
+ i__3 = *n;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ y_tail__[i__] = 0.f;
+ }
+ }
+ prevnormdx = normdx;
+ prev_dz_z__ = dz_z__;
+
+/* Update soluton. */
+
+ if (y_prec_state__ < 2) {
+ saxpy_(n, &c_b11, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
+ } else {
+ sla_wwaddw__(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
+ }
+ }
+/* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT. */
+L666:
+
+/* Set final_* when cnt hits ithresh. */
+
+ if (x_state__ == 1) {
+ final_dx_x__ = dx_x__;
+ }
+ if (z_state__ == 1) {
+ final_dz_z__ = dz_z__;
+ }
+
+/* Compute error bounds. */
+
+ if (*n_norms__ >= 1) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / (
+ 1 - dxratmax);
+ }
+ if (*n_norms__ >= 2) {
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / (
+ 1 - dzratmax);
+ }
+
+/* Compute componentwise relative backward error from formula */
+/* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
+/* where abs(Z) is the componentwise absolute value of the matrix */
+/* or vector Z. */
+
+/* Compute residual RES = B_s - op(A_s) * Y, */
+/* op(A) = A, A**T, or A**H depending on TRANS (and type). */
+ scopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
+ ssymv_(uplo, n, &c_b9, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &
+ c_b11, &res[1], &c__1);
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ ayb[i__] = (r__1 = b[i__ + j * b_dim1], dabs(r__1));
+ }
+
+/* Compute abs(op(A_s))*abs(Y) + abs(B_s). */
+
+ sla_syamv__(&uplo2, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1],
+ &c__1, &c_b11, &ayb[1], &c__1);
+ sla_lin_berr__(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
+
+/* End of loop for each RHS. */
+
+ }
+
+ return 0;
+} /* sla_syrfsx_extended__ */