diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgtrfs.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgtrfs.c')
-rw-r--r-- | contrib/libs/clapack/sgtrfs.c | 444 |
1 files changed, 444 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgtrfs.c b/contrib/libs/clapack/sgtrfs.c new file mode 100644 index 0000000000..0168d1dd92 --- /dev/null +++ b/contrib/libs/clapack/sgtrfs.c @@ -0,0 +1,444 @@ +/* sgtrfs.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static real c_b18 = -1.f; +static real c_b19 = 1.f; + +/* Subroutine */ int sgtrfs_(char *trans, integer *n, integer *nrhs, real *dl, + real *d__, real *du, real *dlf, real *df, real *duf, real *du2, + integer *ipiv, real *b, integer *ldb, real *x, integer *ldx, real * + ferr, real *berr, real *work, integer *iwork, integer *info) +{ + /* System generated locals */ + integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; + real r__1, r__2, r__3, r__4; + + /* Local variables */ + integer i__, j; + real s; + integer nz; + real eps; + integer kase; + real safe1, safe2; + extern logical lsame_(char *, char *); + integer isave[3], count; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *), saxpy_(integer *, real *, real *, integer *, real *, + integer *), slacn2_(integer *, real *, real *, integer *, real *, + integer *, integer *); + extern doublereal slamch_(char *); + real safmin; + extern /* Subroutine */ int xerbla_(char *, integer *), slagtm_( + char *, integer *, integer *, real *, real *, real *, real *, + real *, integer *, real *, real *, integer *); + logical notran; + char transn[1], transt[1]; + real lstres; + extern /* Subroutine */ int sgttrs_(char *, integer *, integer *, real *, + real *, real *, real *, integer *, real *, integer *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SGTRFS improves the computed solution to a system of linear */ +/* equations when the coefficient matrix is tridiagonal, and provides */ +/* error bounds and backward error estimates for the solution. */ + +/* Arguments */ +/* ========= */ + +/* TRANS (input) CHARACTER*1 */ +/* Specifies the form of the system of equations: */ +/* = 'N': A * X = B (No transpose) */ +/* = 'T': A**T * X = B (Transpose) */ +/* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrix B. NRHS >= 0. */ + +/* DL (input) REAL array, dimension (N-1) */ +/* The (n-1) subdiagonal elements of A. */ + +/* D (input) REAL array, dimension (N) */ +/* The diagonal elements of A. */ + +/* DU (input) REAL array, dimension (N-1) */ +/* The (n-1) superdiagonal elements of A. */ + +/* DLF (input) REAL array, dimension (N-1) */ +/* The (n-1) multipliers that define the matrix L from the */ +/* LU factorization of A as computed by SGTTRF. */ + +/* DF (input) REAL array, dimension (N) */ +/* The n diagonal elements of the upper triangular matrix U from */ +/* the LU factorization of A. */ + +/* DUF (input) REAL array, dimension (N-1) */ +/* The (n-1) elements of the first superdiagonal of U. */ + +/* DU2 (input) REAL array, dimension (N-2) */ +/* The (n-2) elements of the second superdiagonal of U. */ + +/* IPIV (input) INTEGER array, dimension (N) */ +/* The pivot indices; for 1 <= i <= n, row i of the matrix was */ +/* interchanged with row IPIV(i). IPIV(i) will always be either */ +/* i or i+1; IPIV(i) = i indicates a row interchange was not */ +/* required. */ + +/* B (input) REAL array, dimension (LDB,NRHS) */ +/* The right hand side matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* X (input/output) REAL array, dimension (LDX,NRHS) */ +/* On entry, the solution matrix X, as computed by SGTTRS. */ +/* On exit, the improved solution matrix X. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of the array X. LDX >= max(1,N). */ + +/* FERR (output) REAL array, dimension (NRHS) */ +/* The estimated forward error bound for each solution vector */ +/* X(j) (the j-th column of the solution matrix X). */ +/* If XTRUE is the true solution corresponding to X(j), FERR(j) */ +/* is an estimated upper bound for the magnitude of the largest */ +/* element in (X(j) - XTRUE) divided by the magnitude of the */ +/* largest element in X(j). The estimate is as reliable as */ +/* the estimate for RCOND, and is almost always a slight */ +/* overestimate of the true error. */ + +/* BERR (output) REAL array, dimension (NRHS) */ +/* The componentwise relative backward error of each solution */ +/* vector X(j) (i.e., the smallest relative change in */ +/* any element of A or B that makes X(j) an exact solution). */ + +/* WORK (workspace) REAL array, dimension (3*N) */ + +/* IWORK (workspace) INTEGER array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Internal Parameters */ +/* =================== */ + +/* ITMAX is the maximum number of steps of iterative refinement. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --dl; + --d__; + --du; + --dlf; + --df; + --duf; + --du2; + --ipiv; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + --ferr; + --berr; + --work; + --iwork; + + /* Function Body */ + *info = 0; + notran = lsame_(trans, "N"); + if (! notran && ! lsame_(trans, "T") && ! lsame_( + trans, "C")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*nrhs < 0) { + *info = -3; + } else if (*ldb < max(1,*n)) { + *info = -13; + } else if (*ldx < max(1,*n)) { + *info = -15; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("SGTRFS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *nrhs == 0) { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + ferr[j] = 0.f; + berr[j] = 0.f; +/* L10: */ + } + return 0; + } + + if (notran) { + *(unsigned char *)transn = 'N'; + *(unsigned char *)transt = 'T'; + } else { + *(unsigned char *)transn = 'T'; + *(unsigned char *)transt = 'N'; + } + +/* NZ = maximum number of nonzero elements in each row of A, plus 1 */ + + nz = 4; + eps = slamch_("Epsilon"); + safmin = slamch_("Safe minimum"); + safe1 = nz * safmin; + safe2 = safe1 / eps; + +/* Do for each right hand side */ + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + + count = 1; + lstres = 3.f; +L20: + +/* Loop until stopping criterion is satisfied. */ + +/* Compute residual R = B - op(A) * X, */ +/* where op(A) = A, A**T, or A**H, depending on TRANS. */ + + scopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); + slagtm_(trans, n, &c__1, &c_b18, &dl[1], &d__[1], &du[1], &x[j * + x_dim1 + 1], ldx, &c_b19, &work[*n + 1], n); + +/* Compute abs(op(A))*abs(x) + abs(b) for use in the backward */ +/* error bound. */ + + if (notran) { + if (*n == 1) { + work[1] = (r__1 = b[j * b_dim1 + 1], dabs(r__1)) + (r__2 = + d__[1] * x[j * x_dim1 + 1], dabs(r__2)); + } else { + work[1] = (r__1 = b[j * b_dim1 + 1], dabs(r__1)) + (r__2 = + d__[1] * x[j * x_dim1 + 1], dabs(r__2)) + (r__3 = du[ + 1] * x[j * x_dim1 + 2], dabs(r__3)); + i__2 = *n - 1; + for (i__ = 2; i__ <= i__2; ++i__) { + work[i__] = (r__1 = b[i__ + j * b_dim1], dabs(r__1)) + ( + r__2 = dl[i__ - 1] * x[i__ - 1 + j * x_dim1], + dabs(r__2)) + (r__3 = d__[i__] * x[i__ + j * + x_dim1], dabs(r__3)) + (r__4 = du[i__] * x[i__ + + 1 + j * x_dim1], dabs(r__4)); +/* L30: */ + } + work[*n] = (r__1 = b[*n + j * b_dim1], dabs(r__1)) + (r__2 = + dl[*n - 1] * x[*n - 1 + j * x_dim1], dabs(r__2)) + ( + r__3 = d__[*n] * x[*n + j * x_dim1], dabs(r__3)); + } + } else { + if (*n == 1) { + work[1] = (r__1 = b[j * b_dim1 + 1], dabs(r__1)) + (r__2 = + d__[1] * x[j * x_dim1 + 1], dabs(r__2)); + } else { + work[1] = (r__1 = b[j * b_dim1 + 1], dabs(r__1)) + (r__2 = + d__[1] * x[j * x_dim1 + 1], dabs(r__2)) + (r__3 = dl[ + 1] * x[j * x_dim1 + 2], dabs(r__3)); + i__2 = *n - 1; + for (i__ = 2; i__ <= i__2; ++i__) { + work[i__] = (r__1 = b[i__ + j * b_dim1], dabs(r__1)) + ( + r__2 = du[i__ - 1] * x[i__ - 1 + j * x_dim1], + dabs(r__2)) + (r__3 = d__[i__] * x[i__ + j * + x_dim1], dabs(r__3)) + (r__4 = dl[i__] * x[i__ + + 1 + j * x_dim1], dabs(r__4)); +/* L40: */ + } + work[*n] = (r__1 = b[*n + j * b_dim1], dabs(r__1)) + (r__2 = + du[*n - 1] * x[*n - 1 + j * x_dim1], dabs(r__2)) + ( + r__3 = d__[*n] * x[*n + j * x_dim1], dabs(r__3)); + } + } + +/* Compute componentwise relative backward error from formula */ + +/* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */ + +/* where abs(Z) is the componentwise absolute value of the matrix */ +/* or vector Z. If the i-th component of the denominator is less */ +/* than SAFE2, then SAFE1 is added to the i-th components of the */ +/* numerator and denominator before dividing. */ + + s = 0.f; + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + if (work[i__] > safe2) { +/* Computing MAX */ + r__2 = s, r__3 = (r__1 = work[*n + i__], dabs(r__1)) / work[ + i__]; + s = dmax(r__2,r__3); + } else { +/* Computing MAX */ + r__2 = s, r__3 = ((r__1 = work[*n + i__], dabs(r__1)) + safe1) + / (work[i__] + safe1); + s = dmax(r__2,r__3); + } +/* L50: */ + } + berr[j] = s; + +/* Test stopping criterion. Continue iterating if */ +/* 1) The residual BERR(J) is larger than machine epsilon, and */ +/* 2) BERR(J) decreased by at least a factor of 2 during the */ +/* last iteration, and */ +/* 3) At most ITMAX iterations tried. */ + + if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) { + +/* Update solution and try again. */ + + sgttrs_(trans, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[ + 1], &work[*n + 1], n, info); + saxpy_(n, &c_b19, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1) + ; + lstres = berr[j]; + ++count; + goto L20; + } + +/* Bound error from formula */ + +/* norm(X - XTRUE) / norm(X) .le. FERR = */ +/* norm( abs(inv(op(A)))* */ +/* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */ + +/* where */ +/* norm(Z) is the magnitude of the largest component of Z */ +/* inv(op(A)) is the inverse of op(A) */ +/* abs(Z) is the componentwise absolute value of the matrix or */ +/* vector Z */ +/* NZ is the maximum number of nonzeros in any row of A, plus 1 */ +/* EPS is machine epsilon */ + +/* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */ +/* is incremented by SAFE1 if the i-th component of */ +/* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */ + +/* Use SLACN2 to estimate the infinity-norm of the matrix */ +/* inv(op(A)) * diag(W), */ +/* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */ + + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + if (work[i__] > safe2) { + work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * + work[i__]; + } else { + work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * + work[i__] + safe1; + } +/* L60: */ + } + + kase = 0; +L70: + slacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & + kase, isave); + if (kase != 0) { + if (kase == 1) { + +/* Multiply by diag(W)*inv(op(A)**T). */ + + sgttrs_(transt, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], & + ipiv[1], &work[*n + 1], n, info); + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + work[*n + i__] = work[i__] * work[*n + i__]; +/* L80: */ + } + } else { + +/* Multiply by inv(op(A))*diag(W). */ + + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + work[*n + i__] = work[i__] * work[*n + i__]; +/* L90: */ + } + sgttrs_(transn, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], & + ipiv[1], &work[*n + 1], n, info); + } + goto L70; + } + +/* Normalize error. */ + + lstres = 0.f; + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + r__2 = lstres, r__3 = (r__1 = x[i__ + j * x_dim1], dabs(r__1)); + lstres = dmax(r__2,r__3); +/* L100: */ + } + if (lstres != 0.f) { + ferr[j] /= lstres; + } + +/* L110: */ + } + + return 0; + +/* End of SGTRFS */ + +} /* sgtrfs_ */ |