aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sggsvp.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sggsvp.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sggsvp.c')
-rw-r--r--contrib/libs/clapack/sggsvp.c508
1 files changed, 508 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sggsvp.c b/contrib/libs/clapack/sggsvp.c
new file mode 100644
index 0000000000..97fa0ded0f
--- /dev/null
+++ b/contrib/libs/clapack/sggsvp.c
@@ -0,0 +1,508 @@
+/* sggsvp.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static real c_b12 = 0.f;
+static real c_b22 = 1.f;
+
+/* Subroutine */ int sggsvp_(char *jobu, char *jobv, char *jobq, integer *m,
+ integer *p, integer *n, real *a, integer *lda, real *b, integer *ldb,
+ real *tola, real *tolb, integer *k, integer *l, real *u, integer *ldu,
+ real *v, integer *ldv, real *q, integer *ldq, integer *iwork, real *
+ tau, real *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
+ u_offset, v_dim1, v_offset, i__1, i__2, i__3;
+ real r__1;
+
+ /* Local variables */
+ integer i__, j;
+ extern logical lsame_(char *, char *);
+ logical wantq, wantu, wantv;
+ extern /* Subroutine */ int sgeqr2_(integer *, integer *, real *, integer
+ *, real *, real *, integer *), sgerq2_(integer *, integer *, real
+ *, integer *, real *, real *, integer *), sorg2r_(integer *,
+ integer *, integer *, real *, integer *, real *, real *, integer *
+), sorm2r_(char *, char *, integer *, integer *, integer *, real *
+, integer *, real *, real *, integer *, real *, integer *), sormr2_(char *, char *, integer *, integer *, integer *,
+ real *, integer *, real *, real *, integer *, real *, integer *), xerbla_(char *, integer *), sgeqpf_(
+ integer *, integer *, real *, integer *, integer *, real *, real *
+, integer *), slacpy_(char *, integer *, integer *, real *,
+ integer *, real *, integer *), slaset_(char *, integer *,
+ integer *, real *, real *, real *, integer *), slapmt_(
+ logical *, integer *, integer *, real *, integer *, integer *);
+ logical forwrd;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SGGSVP computes orthogonal matrices U, V and Q such that */
+
+/* N-K-L K L */
+/* U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
+/* L ( 0 0 A23 ) */
+/* M-K-L ( 0 0 0 ) */
+
+/* N-K-L K L */
+/* = K ( 0 A12 A13 ) if M-K-L < 0; */
+/* M-K ( 0 0 A23 ) */
+
+/* N-K-L K L */
+/* V'*B*Q = L ( 0 0 B13 ) */
+/* P-L ( 0 0 0 ) */
+
+/* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
+/* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
+/* otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
+/* numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the */
+/* transpose of Z. */
+
+/* This decomposition is the preprocessing step for computing the */
+/* Generalized Singular Value Decomposition (GSVD), see subroutine */
+/* SGGSVD. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBU (input) CHARACTER*1 */
+/* = 'U': Orthogonal matrix U is computed; */
+/* = 'N': U is not computed. */
+
+/* JOBV (input) CHARACTER*1 */
+/* = 'V': Orthogonal matrix V is computed; */
+/* = 'N': V is not computed. */
+
+/* JOBQ (input) CHARACTER*1 */
+/* = 'Q': Orthogonal matrix Q is computed; */
+/* = 'N': Q is not computed. */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* P (input) INTEGER */
+/* The number of rows of the matrix B. P >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrices A and B. N >= 0. */
+
+/* A (input/output) REAL array, dimension (LDA,N) */
+/* On entry, the M-by-N matrix A. */
+/* On exit, A contains the triangular (or trapezoidal) matrix */
+/* described in the Purpose section. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* B (input/output) REAL array, dimension (LDB,N) */
+/* On entry, the P-by-N matrix B. */
+/* On exit, B contains the triangular matrix described in */
+/* the Purpose section. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,P). */
+
+/* TOLA (input) REAL */
+/* TOLB (input) REAL */
+/* TOLA and TOLB are the thresholds to determine the effective */
+/* numerical rank of matrix B and a subblock of A. Generally, */
+/* they are set to */
+/* TOLA = MAX(M,N)*norm(A)*MACHEPS, */
+/* TOLB = MAX(P,N)*norm(B)*MACHEPS. */
+/* The size of TOLA and TOLB may affect the size of backward */
+/* errors of the decomposition. */
+
+/* K (output) INTEGER */
+/* L (output) INTEGER */
+/* On exit, K and L specify the dimension of the subblocks */
+/* described in Purpose. */
+/* K + L = effective numerical rank of (A',B')'. */
+
+/* U (output) REAL array, dimension (LDU,M) */
+/* If JOBU = 'U', U contains the orthogonal matrix U. */
+/* If JOBU = 'N', U is not referenced. */
+
+/* LDU (input) INTEGER */
+/* The leading dimension of the array U. LDU >= max(1,M) if */
+/* JOBU = 'U'; LDU >= 1 otherwise. */
+
+/* V (output) REAL array, dimension (LDV,P) */
+/* If JOBV = 'V', V contains the orthogonal matrix V. */
+/* If JOBV = 'N', V is not referenced. */
+
+/* LDV (input) INTEGER */
+/* The leading dimension of the array V. LDV >= max(1,P) if */
+/* JOBV = 'V'; LDV >= 1 otherwise. */
+
+/* Q (output) REAL array, dimension (LDQ,N) */
+/* If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
+/* If JOBQ = 'N', Q is not referenced. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. LDQ >= max(1,N) if */
+/* JOBQ = 'Q'; LDQ >= 1 otherwise. */
+
+/* IWORK (workspace) INTEGER array, dimension (N) */
+
+/* TAU (workspace) REAL array, dimension (N) */
+
+/* WORK (workspace) REAL array, dimension (max(3*N,M,P)) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+
+
+/* Further Details */
+/* =============== */
+
+/* The subroutine uses LAPACK subroutine SGEQPF for the QR factorization */
+/* with column pivoting to detect the effective numerical rank of the */
+/* a matrix. It may be replaced by a better rank determination strategy. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1;
+ u -= u_offset;
+ v_dim1 = *ldv;
+ v_offset = 1 + v_dim1;
+ v -= v_offset;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ --iwork;
+ --tau;
+ --work;
+
+ /* Function Body */
+ wantu = lsame_(jobu, "U");
+ wantv = lsame_(jobv, "V");
+ wantq = lsame_(jobq, "Q");
+ forwrd = TRUE_;
+
+ *info = 0;
+ if (! (wantu || lsame_(jobu, "N"))) {
+ *info = -1;
+ } else if (! (wantv || lsame_(jobv, "N"))) {
+ *info = -2;
+ } else if (! (wantq || lsame_(jobq, "N"))) {
+ *info = -3;
+ } else if (*m < 0) {
+ *info = -4;
+ } else if (*p < 0) {
+ *info = -5;
+ } else if (*n < 0) {
+ *info = -6;
+ } else if (*lda < max(1,*m)) {
+ *info = -8;
+ } else if (*ldb < max(1,*p)) {
+ *info = -10;
+ } else if (*ldu < 1 || wantu && *ldu < *m) {
+ *info = -16;
+ } else if (*ldv < 1 || wantv && *ldv < *p) {
+ *info = -18;
+ } else if (*ldq < 1 || wantq && *ldq < *n) {
+ *info = -20;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SGGSVP", &i__1);
+ return 0;
+ }
+
+/* QR with column pivoting of B: B*P = V*( S11 S12 ) */
+/* ( 0 0 ) */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ iwork[i__] = 0;
+/* L10: */
+ }
+ sgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], info);
+
+/* Update A := A*P */
+
+ slapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
+
+/* Determine the effective rank of matrix B. */
+
+ *l = 0;
+ i__1 = min(*p,*n);
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((r__1 = b[i__ + i__ * b_dim1], dabs(r__1)) > *tolb) {
+ ++(*l);
+ }
+/* L20: */
+ }
+
+ if (wantv) {
+
+/* Copy the details of V, and form V. */
+
+ slaset_("Full", p, p, &c_b12, &c_b12, &v[v_offset], ldv);
+ if (*p > 1) {
+ i__1 = *p - 1;
+ slacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
+ ldv);
+ }
+ i__1 = min(*p,*n);
+ sorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
+ }
+
+/* Clean up B */
+
+ i__1 = *l - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *l;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = 0.f;
+/* L30: */
+ }
+/* L40: */
+ }
+ if (*p > *l) {
+ i__1 = *p - *l;
+ slaset_("Full", &i__1, n, &c_b12, &c_b12, &b[*l + 1 + b_dim1], ldb);
+ }
+
+ if (wantq) {
+
+/* Set Q = I and Update Q := Q*P */
+
+ slaset_("Full", n, n, &c_b12, &c_b22, &q[q_offset], ldq);
+ slapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
+ }
+
+ if (*p >= *l && *n != *l) {
+
+/* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
+
+ sgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
+
+/* Update A := A*Z' */
+
+ sormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
+ a_offset], lda, &work[1], info);
+
+ if (wantq) {
+
+/* Update Q := Q*Z' */
+
+ sormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1],
+ &q[q_offset], ldq, &work[1], info);
+ }
+
+/* Clean up B */
+
+ i__1 = *n - *l;
+ slaset_("Full", l, &i__1, &c_b12, &c_b12, &b[b_offset], ldb);
+ i__1 = *n;
+ for (j = *n - *l + 1; j <= i__1; ++j) {
+ i__2 = *l;
+ for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = 0.f;
+/* L50: */
+ }
+/* L60: */
+ }
+
+ }
+
+/* Let N-L L */
+/* A = ( A11 A12 ) M, */
+
+/* then the following does the complete QR decomposition of A11: */
+
+/* A11 = U*( 0 T12 )*P1' */
+/* ( 0 0 ) */
+
+ i__1 = *n - *l;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ iwork[i__] = 0;
+/* L70: */
+ }
+ i__1 = *n - *l;
+ sgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], info);
+
+/* Determine the effective rank of A11 */
+
+ *k = 0;
+/* Computing MIN */
+ i__2 = *m, i__3 = *n - *l;
+ i__1 = min(i__2,i__3);
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((r__1 = a[i__ + i__ * a_dim1], dabs(r__1)) > *tola) {
+ ++(*k);
+ }
+/* L80: */
+ }
+
+/* Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N ) */
+
+/* Computing MIN */
+ i__2 = *m, i__3 = *n - *l;
+ i__1 = min(i__2,i__3);
+ sorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
+ *n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
+
+ if (wantu) {
+
+/* Copy the details of U, and form U */
+
+ slaset_("Full", m, m, &c_b12, &c_b12, &u[u_offset], ldu);
+ if (*m > 1) {
+ i__1 = *m - 1;
+ i__2 = *n - *l;
+ slacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
+, ldu);
+ }
+/* Computing MIN */
+ i__2 = *m, i__3 = *n - *l;
+ i__1 = min(i__2,i__3);
+ sorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
+ }
+
+ if (wantq) {
+
+/* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
+
+ i__1 = *n - *l;
+ slapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
+ }
+
+/* Clean up A: set the strictly lower triangular part of */
+/* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
+
+ i__1 = *k - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *k;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.f;
+/* L90: */
+ }
+/* L100: */
+ }
+ if (*m > *k) {
+ i__1 = *m - *k;
+ i__2 = *n - *l;
+ slaset_("Full", &i__1, &i__2, &c_b12, &c_b12, &a[*k + 1 + a_dim1],
+ lda);
+ }
+
+ if (*n - *l > *k) {
+
+/* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
+
+ i__1 = *n - *l;
+ sgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
+
+ if (wantq) {
+
+/* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1' */
+
+ i__1 = *n - *l;
+ sormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
+ tau[1], &q[q_offset], ldq, &work[1], info);
+ }
+
+/* Clean up A */
+
+ i__1 = *n - *l - *k;
+ slaset_("Full", k, &i__1, &c_b12, &c_b12, &a[a_offset], lda);
+ i__1 = *n - *l;
+ for (j = *n - *l - *k + 1; j <= i__1; ++j) {
+ i__2 = *k;
+ for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.f;
+/* L110: */
+ }
+/* L120: */
+ }
+
+ }
+
+ if (*m > *k) {
+
+/* QR factorization of A( K+1:M,N-L+1:N ) */
+
+ i__1 = *m - *k;
+ sgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
+ work[1], info);
+
+ if (wantu) {
+
+/* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
+
+ i__1 = *m - *k;
+/* Computing MIN */
+ i__3 = *m - *k;
+ i__2 = min(i__3,*l);
+ sorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
+ - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
+ 1], ldu, &work[1], info);
+ }
+
+/* Clean up */
+
+ i__1 = *n;
+ for (j = *n - *l + 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.f;
+/* L130: */
+ }
+/* L140: */
+ }
+
+ }
+
+ return 0;
+
+/* End of SGGSVP */
+
+} /* sggsvp_ */