diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sggesx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sggesx.c')
-rw-r--r-- | contrib/libs/clapack/sggesx.c | 811 |
1 files changed, 811 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sggesx.c b/contrib/libs/clapack/sggesx.c new file mode 100644 index 0000000000..9128e03431 --- /dev/null +++ b/contrib/libs/clapack/sggesx.c @@ -0,0 +1,811 @@ +/* sggesx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c__0 = 0; +static integer c_n1 = -1; +static real c_b42 = 0.f; +static real c_b43 = 1.f; + +/* Subroutine */ int sggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp + selctg, char *sense, integer *n, real *a, integer *lda, real *b, + integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta, + real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *rconde, + real *rcondv, real *work, integer *lwork, integer *iwork, integer * + liwork, logical *bwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, + vsr_dim1, vsr_offset, i__1, i__2; + real r__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, ip; + real pl, pr, dif[2]; + integer ihi, ilo; + real eps; + integer ijob; + real anrm, bnrm; + integer ierr, itau, iwrk, lwrk; + extern logical lsame_(char *, char *); + integer ileft, icols; + logical cursl, ilvsl, ilvsr; + integer irows; + logical lst2sl; + extern /* Subroutine */ int slabad_(real *, real *), sggbak_(char *, char + *, integer *, integer *, integer *, real *, real *, integer *, + real *, integer *, integer *), sggbal_(char *, + integer *, real *, integer *, real *, integer *, integer *, + integer *, real *, real *, real *, integer *); + logical ilascl, ilbscl; + extern doublereal slamch_(char *), slange_(char *, integer *, + integer *, real *, integer *, real *); + real safmin; + extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, + integer *, real *, integer *, real *, integer *, real *, integer * +, real *, integer *, integer *); + real safmax; + extern /* Subroutine */ int xerbla_(char *, integer *); + real bignum; + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + integer ijobvl, iright; + extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer + *, real *, real *, integer *, integer *); + integer ijobvr; + extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, + integer *, real *, integer *); + logical wantsb, wantse, lastsl; + integer liwmin; + real anrmto, bnrmto; + integer minwrk, maxwrk; + logical wantsn; + real smlnum; + extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, + integer *, integer *, real *, integer *, real *, integer *, real * +, real *, real *, real *, integer *, real *, integer *, real *, + integer *, integer *), slaset_(char *, + integer *, integer *, real *, real *, real *, integer *), + sorgqr_(integer *, integer *, integer *, real *, integer *, real * +, real *, integer *, integer *), stgsen_(integer *, logical *, + logical *, logical *, integer *, real *, integer *, real *, + integer *, real *, real *, real *, real *, integer *, real *, + integer *, integer *, real *, real *, real *, real *, integer *, + integer *, integer *, integer *); + logical wantst, lquery, wantsv; + extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, + integer *, real *, integer *, real *, real *, integer *, real *, + integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ +/* .. Function Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SGGESX computes for a pair of N-by-N real nonsymmetric matrices */ +/* (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */ +/* optionally, the left and/or right matrices of Schur vectors (VSL and */ +/* VSR). This gives the generalized Schur factorization */ + +/* (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */ + +/* Optionally, it also orders the eigenvalues so that a selected cluster */ +/* of eigenvalues appears in the leading diagonal blocks of the upper */ +/* quasi-triangular matrix S and the upper triangular matrix T; computes */ +/* a reciprocal condition number for the average of the selected */ +/* eigenvalues (RCONDE); and computes a reciprocal condition number for */ +/* the right and left deflating subspaces corresponding to the selected */ +/* eigenvalues (RCONDV). The leading columns of VSL and VSR then form */ +/* an orthonormal basis for the corresponding left and right eigenspaces */ +/* (deflating subspaces). */ + +/* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */ +/* or a ratio alpha/beta = w, such that A - w*B is singular. It is */ +/* usually represented as the pair (alpha,beta), as there is a */ +/* reasonable interpretation for beta=0 or for both being zero. */ + +/* A pair of matrices (S,T) is in generalized real Schur form if T is */ +/* upper triangular with non-negative diagonal and S is block upper */ +/* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */ +/* to real generalized eigenvalues, while 2-by-2 blocks of S will be */ +/* "standardized" by making the corresponding elements of T have the */ +/* form: */ +/* [ a 0 ] */ +/* [ 0 b ] */ + +/* and the pair of corresponding 2-by-2 blocks in S and T will have a */ +/* complex conjugate pair of generalized eigenvalues. */ + + +/* Arguments */ +/* ========= */ + +/* JOBVSL (input) CHARACTER*1 */ +/* = 'N': do not compute the left Schur vectors; */ +/* = 'V': compute the left Schur vectors. */ + +/* JOBVSR (input) CHARACTER*1 */ +/* = 'N': do not compute the right Schur vectors; */ +/* = 'V': compute the right Schur vectors. */ + +/* SORT (input) CHARACTER*1 */ +/* Specifies whether or not to order the eigenvalues on the */ +/* diagonal of the generalized Schur form. */ +/* = 'N': Eigenvalues are not ordered; */ +/* = 'S': Eigenvalues are ordered (see SELCTG). */ + +/* SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments */ +/* SELCTG must be declared EXTERNAL in the calling subroutine. */ +/* If SORT = 'N', SELCTG is not referenced. */ +/* If SORT = 'S', SELCTG is used to select eigenvalues to sort */ +/* to the top left of the Schur form. */ +/* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */ +/* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */ +/* one of a complex conjugate pair of eigenvalues is selected, */ +/* then both complex eigenvalues are selected. */ +/* Note that a selected complex eigenvalue may no longer satisfy */ +/* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */ +/* since ordering may change the value of complex eigenvalues */ +/* (especially if the eigenvalue is ill-conditioned), in this */ +/* case INFO is set to N+3. */ + +/* SENSE (input) CHARACTER*1 */ +/* Determines which reciprocal condition numbers are computed. */ +/* = 'N' : None are computed; */ +/* = 'E' : Computed for average of selected eigenvalues only; */ +/* = 'V' : Computed for selected deflating subspaces only; */ +/* = 'B' : Computed for both. */ +/* If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */ + +/* N (input) INTEGER */ +/* The order of the matrices A, B, VSL, and VSR. N >= 0. */ + +/* A (input/output) REAL array, dimension (LDA, N) */ +/* On entry, the first of the pair of matrices. */ +/* On exit, A has been overwritten by its generalized Schur */ +/* form S. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of A. LDA >= max(1,N). */ + +/* B (input/output) REAL array, dimension (LDB, N) */ +/* On entry, the second of the pair of matrices. */ +/* On exit, B has been overwritten by its generalized Schur */ +/* form T. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of B. LDB >= max(1,N). */ + +/* SDIM (output) INTEGER */ +/* If SORT = 'N', SDIM = 0. */ +/* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */ +/* for which SELCTG is true. (Complex conjugate pairs for which */ +/* SELCTG is true for either eigenvalue count as 2.) */ + +/* ALPHAR (output) REAL array, dimension (N) */ +/* ALPHAI (output) REAL array, dimension (N) */ +/* BETA (output) REAL array, dimension (N) */ +/* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */ +/* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */ +/* and BETA(j),j=1,...,N are the diagonals of the complex Schur */ +/* form (S,T) that would result if the 2-by-2 diagonal blocks of */ +/* the real Schur form of (A,B) were further reduced to */ +/* triangular form using 2-by-2 complex unitary transformations. */ +/* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */ +/* positive, then the j-th and (j+1)-st eigenvalues are a */ +/* complex conjugate pair, with ALPHAI(j+1) negative. */ + +/* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */ +/* may easily over- or underflow, and BETA(j) may even be zero. */ +/* Thus, the user should avoid naively computing the ratio. */ +/* However, ALPHAR and ALPHAI will be always less than and */ +/* usually comparable with norm(A) in magnitude, and BETA always */ +/* less than and usually comparable with norm(B). */ + +/* VSL (output) REAL array, dimension (LDVSL,N) */ +/* If JOBVSL = 'V', VSL will contain the left Schur vectors. */ +/* Not referenced if JOBVSL = 'N'. */ + +/* LDVSL (input) INTEGER */ +/* The leading dimension of the matrix VSL. LDVSL >=1, and */ +/* if JOBVSL = 'V', LDVSL >= N. */ + +/* VSR (output) REAL array, dimension (LDVSR,N) */ +/* If JOBVSR = 'V', VSR will contain the right Schur vectors. */ +/* Not referenced if JOBVSR = 'N'. */ + +/* LDVSR (input) INTEGER */ +/* The leading dimension of the matrix VSR. LDVSR >= 1, and */ +/* if JOBVSR = 'V', LDVSR >= N. */ + +/* RCONDE (output) REAL array, dimension ( 2 ) */ +/* If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */ +/* reciprocal condition numbers for the average of the selected */ +/* eigenvalues. */ +/* Not referenced if SENSE = 'N' or 'V'. */ + +/* RCONDV (output) REAL array, dimension ( 2 ) */ +/* If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */ +/* reciprocal condition numbers for the selected deflating */ +/* subspaces. */ +/* Not referenced if SENSE = 'N' or 'E'. */ + +/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. */ +/* If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */ +/* LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */ +/* LWORK >= max( 8*N, 6*N+16 ). */ +/* Note that 2*SDIM*(N-SDIM) <= N*N/2. */ +/* Note also that an error is only returned if */ +/* LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */ +/* this may not be large enough. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the bound on the optimal size of the WORK */ +/* array and the minimum size of the IWORK array, returns these */ +/* values as the first entries of the WORK and IWORK arrays, and */ +/* no error message related to LWORK or LIWORK is issued by */ +/* XERBLA. */ + +/* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */ +/* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */ + +/* LIWORK (input) INTEGER */ +/* The dimension of the array IWORK. */ +/* If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */ +/* LIWORK >= N+6. */ + +/* If LIWORK = -1, then a workspace query is assumed; the */ +/* routine only calculates the bound on the optimal size of the */ +/* WORK array and the minimum size of the IWORK array, returns */ +/* these values as the first entries of the WORK and IWORK */ +/* arrays, and no error message related to LWORK or LIWORK is */ +/* issued by XERBLA. */ + +/* BWORK (workspace) LOGICAL array, dimension (N) */ +/* Not referenced if SORT = 'N'. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* = 1,...,N: */ +/* The QZ iteration failed. (A,B) are not in Schur */ +/* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */ +/* be correct for j=INFO+1,...,N. */ +/* > N: =N+1: other than QZ iteration failed in SHGEQZ */ +/* =N+2: after reordering, roundoff changed values of */ +/* some complex eigenvalues so that leading */ +/* eigenvalues in the Generalized Schur form no */ +/* longer satisfy SELCTG=.TRUE. This could also */ +/* be caused due to scaling. */ +/* =N+3: reordering failed in STGSEN. */ + +/* Further details */ +/* =============== */ + +/* An approximate (asymptotic) bound on the average absolute error of */ +/* the selected eigenvalues is */ + +/* EPS * norm((A, B)) / RCONDE( 1 ). */ + +/* An approximate (asymptotic) bound on the maximum angular error in */ +/* the computed deflating subspaces is */ + +/* EPS * norm((A, B)) / RCONDV( 2 ). */ + +/* See LAPACK User's Guide, section 4.11 for more information. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --alphar; + --alphai; + --beta; + vsl_dim1 = *ldvsl; + vsl_offset = 1 + vsl_dim1; + vsl -= vsl_offset; + vsr_dim1 = *ldvsr; + vsr_offset = 1 + vsr_dim1; + vsr -= vsr_offset; + --rconde; + --rcondv; + --work; + --iwork; + --bwork; + + /* Function Body */ + if (lsame_(jobvsl, "N")) { + ijobvl = 1; + ilvsl = FALSE_; + } else if (lsame_(jobvsl, "V")) { + ijobvl = 2; + ilvsl = TRUE_; + } else { + ijobvl = -1; + ilvsl = FALSE_; + } + + if (lsame_(jobvsr, "N")) { + ijobvr = 1; + ilvsr = FALSE_; + } else if (lsame_(jobvsr, "V")) { + ijobvr = 2; + ilvsr = TRUE_; + } else { + ijobvr = -1; + ilvsr = FALSE_; + } + + wantst = lsame_(sort, "S"); + wantsn = lsame_(sense, "N"); + wantse = lsame_(sense, "E"); + wantsv = lsame_(sense, "V"); + wantsb = lsame_(sense, "B"); + lquery = *lwork == -1 || *liwork == -1; + if (wantsn) { + ijob = 0; + } else if (wantse) { + ijob = 1; + } else if (wantsv) { + ijob = 2; + } else if (wantsb) { + ijob = 4; + } + +/* Test the input arguments */ + + *info = 0; + if (ijobvl <= 0) { + *info = -1; + } else if (ijobvr <= 0) { + *info = -2; + } else if (! wantst && ! lsame_(sort, "N")) { + *info = -3; + } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! + wantsn) { + *info = -5; + } else if (*n < 0) { + *info = -6; + } else if (*lda < max(1,*n)) { + *info = -8; + } else if (*ldb < max(1,*n)) { + *info = -10; + } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { + *info = -16; + } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { + *info = -18; + } + +/* Compute workspace */ +/* (Note: Comments in the code beginning "Workspace:" describe the */ +/* minimal amount of workspace needed at that point in the code, */ +/* as well as the preferred amount for good performance. */ +/* NB refers to the optimal block size for the immediately */ +/* following subroutine, as returned by ILAENV.) */ + + if (*info == 0) { + if (*n > 0) { +/* Computing MAX */ + i__1 = *n << 3, i__2 = *n * 6 + 16; + minwrk = max(i__1,i__2); + maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, & + c__1, n, &c__0); +/* Computing MAX */ + i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR", + " ", n, &c__1, n, &c_n1); + maxwrk = max(i__1,i__2); + if (ilvsl) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR" + "GQR", " ", n, &c__1, n, &c_n1); + maxwrk = max(i__1,i__2); + } + lwrk = maxwrk; + if (ijob >= 1) { +/* Computing MAX */ + i__1 = lwrk, i__2 = *n * *n / 2; + lwrk = max(i__1,i__2); + } + } else { + minwrk = 1; + maxwrk = 1; + lwrk = 1; + } + work[1] = (real) lwrk; + if (wantsn || *n == 0) { + liwmin = 1; + } else { + liwmin = *n + 6; + } + iwork[1] = liwmin; + + if (*lwork < minwrk && ! lquery) { + *info = -22; + } else if (*liwork < liwmin && ! lquery) { + *info = -24; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("SGGESX", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + *sdim = 0; + return 0; + } + +/* Get machine constants */ + + eps = slamch_("P"); + safmin = slamch_("S"); + safmax = 1.f / safmin; + slabad_(&safmin, &safmax); + smlnum = sqrt(safmin) / eps; + bignum = 1.f / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); + ilascl = FALSE_; + if (anrm > 0.f && anrm < smlnum) { + anrmto = smlnum; + ilascl = TRUE_; + } else if (anrm > bignum) { + anrmto = bignum; + ilascl = TRUE_; + } + if (ilascl) { + slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & + ierr); + } + +/* Scale B if max element outside range [SMLNUM,BIGNUM] */ + + bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); + ilbscl = FALSE_; + if (bnrm > 0.f && bnrm < smlnum) { + bnrmto = smlnum; + ilbscl = TRUE_; + } else if (bnrm > bignum) { + bnrmto = bignum; + ilbscl = TRUE_; + } + if (ilbscl) { + slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & + ierr); + } + +/* Permute the matrix to make it more nearly triangular */ +/* (Workspace: need 6*N + 2*N for permutation parameters) */ + + ileft = 1; + iright = *n + 1; + iwrk = iright + *n; + sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ + ileft], &work[iright], &work[iwrk], &ierr); + +/* Reduce B to triangular form (QR decomposition of B) */ +/* (Workspace: need N, prefer N*NB) */ + + irows = ihi + 1 - ilo; + icols = *n + 1 - ilo; + itau = iwrk; + iwrk = itau + irows; + i__1 = *lwork + 1 - iwrk; + sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ + iwrk], &i__1, &ierr); + +/* Apply the orthogonal transformation to matrix A */ +/* (Workspace: need N, prefer N*NB) */ + + i__1 = *lwork + 1 - iwrk; + sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & + work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, & + ierr); + +/* Initialize VSL */ +/* (Workspace: need N, prefer N*NB) */ + + if (ilvsl) { + slaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl); + if (irows > 1) { + i__1 = irows - 1; + i__2 = irows - 1; + slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ + ilo + 1 + ilo * vsl_dim1], ldvsl); + } + i__1 = *lwork + 1 - iwrk; + sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & + work[itau], &work[iwrk], &i__1, &ierr); + } + +/* Initialize VSR */ + + if (ilvsr) { + slaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr); + } + +/* Reduce to generalized Hessenberg form */ +/* (Workspace: none needed) */ + + sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], + ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr); + + *sdim = 0; + +/* Perform QZ algorithm, computing Schur vectors if desired */ +/* (Workspace: need N) */ + + iwrk = itau; + i__1 = *lwork + 1 - iwrk; + shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ + b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] +, ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr); + if (ierr != 0) { + if (ierr > 0 && ierr <= *n) { + *info = ierr; + } else if (ierr > *n && ierr <= *n << 1) { + *info = ierr - *n; + } else { + *info = *n + 1; + } + goto L50; + } + +/* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */ +/* condition number(s) */ +/* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */ +/* otherwise, need 8*(N+1) ) */ + + if (wantst) { + +/* Undo scaling on eigenvalues before SELCTGing */ + + if (ilascl) { + slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], + n, &ierr); + slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], + n, &ierr); + } + if (ilbscl) { + slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, + &ierr); + } + +/* Select eigenvalues */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); +/* L10: */ + } + +/* Reorder eigenvalues, transform Generalized Schur vectors, and */ +/* compute reciprocal condition numbers */ + + i__1 = *lwork - iwrk + 1; + stgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ + b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[ + vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr, + dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr); + + if (ijob >= 1) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim); + maxwrk = max(i__1,i__2); + } + if (ierr == -22) { + +/* not enough real workspace */ + + *info = -22; + } else { + if (ijob == 1 || ijob == 4) { + rconde[1] = pl; + rconde[2] = pr; + } + if (ijob == 2 || ijob == 4) { + rcondv[1] = dif[0]; + rcondv[2] = dif[1]; + } + if (ierr == 1) { + *info = *n + 3; + } + } + + } + +/* Apply permutation to VSL and VSR */ +/* (Workspace: none needed) */ + + if (ilvsl) { + sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ + vsl_offset], ldvsl, &ierr); + } + + if (ilvsr) { + sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ + vsr_offset], ldvsr, &ierr); + } + +/* Check if unscaling would cause over/underflow, if so, rescale */ +/* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */ +/* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */ + + if (ilascl) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + if (alphai[i__] != 0.f) { + if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[ + i__] > anrm / anrmto) { + work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__], + dabs(r__1)); + beta[i__] *= work[1]; + alphar[i__] *= work[1]; + alphai[i__] *= work[1]; + } else if (alphai[i__] / safmax > anrmto / anrm || safmin / + alphai[i__] > anrm / anrmto) { + work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[ + i__], dabs(r__1)); + beta[i__] *= work[1]; + alphar[i__] *= work[1]; + alphai[i__] *= work[1]; + } + } +/* L20: */ + } + } + + if (ilbscl) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + if (alphai[i__] != 0.f) { + if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] + > bnrm / bnrmto) { + work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], dabs( + r__1)); + beta[i__] *= work[1]; + alphar[i__] *= work[1]; + alphai[i__] *= work[1]; + } + } +/* L25: */ + } + } + +/* Undo scaling */ + + if (ilascl) { + slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & + ierr); + slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & + ierr); + slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & + ierr); + } + + if (ilbscl) { + slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & + ierr); + slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & + ierr); + } + + if (wantst) { + +/* Check if reordering is correct */ + + lastsl = TRUE_; + lst2sl = TRUE_; + *sdim = 0; + ip = 0; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); + if (alphai[i__] == 0.f) { + if (cursl) { + ++(*sdim); + } + ip = 0; + if (cursl && ! lastsl) { + *info = *n + 2; + } + } else { + if (ip == 1) { + +/* Last eigenvalue of conjugate pair */ + + cursl = cursl || lastsl; + lastsl = cursl; + if (cursl) { + *sdim += 2; + } + ip = -1; + if (cursl && ! lst2sl) { + *info = *n + 2; + } + } else { + +/* First eigenvalue of conjugate pair */ + + ip = 1; + } + } + lst2sl = lastsl; + lastsl = cursl; +/* L40: */ + } + + } + +L50: + + work[1] = (real) maxwrk; + iwork[1] = liwmin; + + return 0; + +/* End of SGGESX */ + +} /* sggesx_ */ |