aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sggesx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sggesx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sggesx.c')
-rw-r--r--contrib/libs/clapack/sggesx.c811
1 files changed, 811 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sggesx.c b/contrib/libs/clapack/sggesx.c
new file mode 100644
index 0000000000..9128e03431
--- /dev/null
+++ b/contrib/libs/clapack/sggesx.c
@@ -0,0 +1,811 @@
+/* sggesx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c__0 = 0;
+static integer c_n1 = -1;
+static real c_b42 = 0.f;
+static real c_b43 = 1.f;
+
+/* Subroutine */ int sggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp
+ selctg, char *sense, integer *n, real *a, integer *lda, real *b,
+ integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta,
+ real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *rconde,
+ real *rcondv, real *work, integer *lwork, integer *iwork, integer *
+ liwork, logical *bwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
+ vsr_dim1, vsr_offset, i__1, i__2;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, ip;
+ real pl, pr, dif[2];
+ integer ihi, ilo;
+ real eps;
+ integer ijob;
+ real anrm, bnrm;
+ integer ierr, itau, iwrk, lwrk;
+ extern logical lsame_(char *, char *);
+ integer ileft, icols;
+ logical cursl, ilvsl, ilvsr;
+ integer irows;
+ logical lst2sl;
+ extern /* Subroutine */ int slabad_(real *, real *), sggbak_(char *, char
+ *, integer *, integer *, integer *, real *, real *, integer *,
+ real *, integer *, integer *), sggbal_(char *,
+ integer *, real *, integer *, real *, integer *, integer *,
+ integer *, real *, real *, real *, integer *);
+ logical ilascl, ilbscl;
+ extern doublereal slamch_(char *), slange_(char *, integer *,
+ integer *, real *, integer *, real *);
+ real safmin;
+ extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *,
+ integer *, real *, integer *, real *, integer *, real *, integer *
+, real *, integer *, integer *);
+ real safmax;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum;
+ extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
+ real *, integer *, integer *, real *, integer *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ integer ijobvl, iright;
+ extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer
+ *, real *, real *, integer *, integer *);
+ integer ijobvr;
+ extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
+ integer *, real *, integer *);
+ logical wantsb, wantse, lastsl;
+ integer liwmin;
+ real anrmto, bnrmto;
+ integer minwrk, maxwrk;
+ logical wantsn;
+ real smlnum;
+ extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *,
+ integer *, integer *, real *, integer *, real *, integer *, real *
+, real *, real *, real *, integer *, real *, integer *, real *,
+ integer *, integer *), slaset_(char *,
+ integer *, integer *, real *, real *, real *, integer *),
+ sorgqr_(integer *, integer *, integer *, real *, integer *, real *
+, real *, integer *, integer *), stgsen_(integer *, logical *,
+ logical *, logical *, integer *, real *, integer *, real *,
+ integer *, real *, real *, real *, real *, integer *, real *,
+ integer *, integer *, real *, real *, real *, real *, integer *,
+ integer *, integer *, integer *);
+ logical wantst, lquery, wantsv;
+ extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
+ integer *, real *, integer *, real *, real *, integer *, real *,
+ integer *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+/* .. Function Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SGGESX computes for a pair of N-by-N real nonsymmetric matrices */
+/* (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */
+/* optionally, the left and/or right matrices of Schur vectors (VSL and */
+/* VSR). This gives the generalized Schur factorization */
+
+/* (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */
+
+/* Optionally, it also orders the eigenvalues so that a selected cluster */
+/* of eigenvalues appears in the leading diagonal blocks of the upper */
+/* quasi-triangular matrix S and the upper triangular matrix T; computes */
+/* a reciprocal condition number for the average of the selected */
+/* eigenvalues (RCONDE); and computes a reciprocal condition number for */
+/* the right and left deflating subspaces corresponding to the selected */
+/* eigenvalues (RCONDV). The leading columns of VSL and VSR then form */
+/* an orthonormal basis for the corresponding left and right eigenspaces */
+/* (deflating subspaces). */
+
+/* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
+/* or a ratio alpha/beta = w, such that A - w*B is singular. It is */
+/* usually represented as the pair (alpha,beta), as there is a */
+/* reasonable interpretation for beta=0 or for both being zero. */
+
+/* A pair of matrices (S,T) is in generalized real Schur form if T is */
+/* upper triangular with non-negative diagonal and S is block upper */
+/* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
+/* to real generalized eigenvalues, while 2-by-2 blocks of S will be */
+/* "standardized" by making the corresponding elements of T have the */
+/* form: */
+/* [ a 0 ] */
+/* [ 0 b ] */
+
+/* and the pair of corresponding 2-by-2 blocks in S and T will have a */
+/* complex conjugate pair of generalized eigenvalues. */
+
+
+/* Arguments */
+/* ========= */
+
+/* JOBVSL (input) CHARACTER*1 */
+/* = 'N': do not compute the left Schur vectors; */
+/* = 'V': compute the left Schur vectors. */
+
+/* JOBVSR (input) CHARACTER*1 */
+/* = 'N': do not compute the right Schur vectors; */
+/* = 'V': compute the right Schur vectors. */
+
+/* SORT (input) CHARACTER*1 */
+/* Specifies whether or not to order the eigenvalues on the */
+/* diagonal of the generalized Schur form. */
+/* = 'N': Eigenvalues are not ordered; */
+/* = 'S': Eigenvalues are ordered (see SELCTG). */
+
+/* SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments */
+/* SELCTG must be declared EXTERNAL in the calling subroutine. */
+/* If SORT = 'N', SELCTG is not referenced. */
+/* If SORT = 'S', SELCTG is used to select eigenvalues to sort */
+/* to the top left of the Schur form. */
+/* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
+/* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
+/* one of a complex conjugate pair of eigenvalues is selected, */
+/* then both complex eigenvalues are selected. */
+/* Note that a selected complex eigenvalue may no longer satisfy */
+/* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */
+/* since ordering may change the value of complex eigenvalues */
+/* (especially if the eigenvalue is ill-conditioned), in this */
+/* case INFO is set to N+3. */
+
+/* SENSE (input) CHARACTER*1 */
+/* Determines which reciprocal condition numbers are computed. */
+/* = 'N' : None are computed; */
+/* = 'E' : Computed for average of selected eigenvalues only; */
+/* = 'V' : Computed for selected deflating subspaces only; */
+/* = 'B' : Computed for both. */
+/* If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A, B, VSL, and VSR. N >= 0. */
+
+/* A (input/output) REAL array, dimension (LDA, N) */
+/* On entry, the first of the pair of matrices. */
+/* On exit, A has been overwritten by its generalized Schur */
+/* form S. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of A. LDA >= max(1,N). */
+
+/* B (input/output) REAL array, dimension (LDB, N) */
+/* On entry, the second of the pair of matrices. */
+/* On exit, B has been overwritten by its generalized Schur */
+/* form T. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of B. LDB >= max(1,N). */
+
+/* SDIM (output) INTEGER */
+/* If SORT = 'N', SDIM = 0. */
+/* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
+/* for which SELCTG is true. (Complex conjugate pairs for which */
+/* SELCTG is true for either eigenvalue count as 2.) */
+
+/* ALPHAR (output) REAL array, dimension (N) */
+/* ALPHAI (output) REAL array, dimension (N) */
+/* BETA (output) REAL array, dimension (N) */
+/* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
+/* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
+/* and BETA(j),j=1,...,N are the diagonals of the complex Schur */
+/* form (S,T) that would result if the 2-by-2 diagonal blocks of */
+/* the real Schur form of (A,B) were further reduced to */
+/* triangular form using 2-by-2 complex unitary transformations. */
+/* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
+/* positive, then the j-th and (j+1)-st eigenvalues are a */
+/* complex conjugate pair, with ALPHAI(j+1) negative. */
+
+/* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
+/* may easily over- or underflow, and BETA(j) may even be zero. */
+/* Thus, the user should avoid naively computing the ratio. */
+/* However, ALPHAR and ALPHAI will be always less than and */
+/* usually comparable with norm(A) in magnitude, and BETA always */
+/* less than and usually comparable with norm(B). */
+
+/* VSL (output) REAL array, dimension (LDVSL,N) */
+/* If JOBVSL = 'V', VSL will contain the left Schur vectors. */
+/* Not referenced if JOBVSL = 'N'. */
+
+/* LDVSL (input) INTEGER */
+/* The leading dimension of the matrix VSL. LDVSL >=1, and */
+/* if JOBVSL = 'V', LDVSL >= N. */
+
+/* VSR (output) REAL array, dimension (LDVSR,N) */
+/* If JOBVSR = 'V', VSR will contain the right Schur vectors. */
+/* Not referenced if JOBVSR = 'N'. */
+
+/* LDVSR (input) INTEGER */
+/* The leading dimension of the matrix VSR. LDVSR >= 1, and */
+/* if JOBVSR = 'V', LDVSR >= N. */
+
+/* RCONDE (output) REAL array, dimension ( 2 ) */
+/* If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */
+/* reciprocal condition numbers for the average of the selected */
+/* eigenvalues. */
+/* Not referenced if SENSE = 'N' or 'V'. */
+
+/* RCONDV (output) REAL array, dimension ( 2 ) */
+/* If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */
+/* reciprocal condition numbers for the selected deflating */
+/* subspaces. */
+/* Not referenced if SENSE = 'N' or 'E'. */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */
+/* LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */
+/* LWORK >= max( 8*N, 6*N+16 ). */
+/* Note that 2*SDIM*(N-SDIM) <= N*N/2. */
+/* Note also that an error is only returned if */
+/* LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */
+/* this may not be large enough. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the bound on the optimal size of the WORK */
+/* array and the minimum size of the IWORK array, returns these */
+/* values as the first entries of the WORK and IWORK arrays, and */
+/* no error message related to LWORK or LIWORK is issued by */
+/* XERBLA. */
+
+/* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of the array IWORK. */
+/* If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */
+/* LIWORK >= N+6. */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the bound on the optimal size of the */
+/* WORK array and the minimum size of the IWORK array, returns */
+/* these values as the first entries of the WORK and IWORK */
+/* arrays, and no error message related to LWORK or LIWORK is */
+/* issued by XERBLA. */
+
+/* BWORK (workspace) LOGICAL array, dimension (N) */
+/* Not referenced if SORT = 'N'. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* = 1,...,N: */
+/* The QZ iteration failed. (A,B) are not in Schur */
+/* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
+/* be correct for j=INFO+1,...,N. */
+/* > N: =N+1: other than QZ iteration failed in SHGEQZ */
+/* =N+2: after reordering, roundoff changed values of */
+/* some complex eigenvalues so that leading */
+/* eigenvalues in the Generalized Schur form no */
+/* longer satisfy SELCTG=.TRUE. This could also */
+/* be caused due to scaling. */
+/* =N+3: reordering failed in STGSEN. */
+
+/* Further details */
+/* =============== */
+
+/* An approximate (asymptotic) bound on the average absolute error of */
+/* the selected eigenvalues is */
+
+/* EPS * norm((A, B)) / RCONDE( 1 ). */
+
+/* An approximate (asymptotic) bound on the maximum angular error in */
+/* the computed deflating subspaces is */
+
+/* EPS * norm((A, B)) / RCONDV( 2 ). */
+
+/* See LAPACK User's Guide, section 4.11 for more information. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --alphar;
+ --alphai;
+ --beta;
+ vsl_dim1 = *ldvsl;
+ vsl_offset = 1 + vsl_dim1;
+ vsl -= vsl_offset;
+ vsr_dim1 = *ldvsr;
+ vsr_offset = 1 + vsr_dim1;
+ vsr -= vsr_offset;
+ --rconde;
+ --rcondv;
+ --work;
+ --iwork;
+ --bwork;
+
+ /* Function Body */
+ if (lsame_(jobvsl, "N")) {
+ ijobvl = 1;
+ ilvsl = FALSE_;
+ } else if (lsame_(jobvsl, "V")) {
+ ijobvl = 2;
+ ilvsl = TRUE_;
+ } else {
+ ijobvl = -1;
+ ilvsl = FALSE_;
+ }
+
+ if (lsame_(jobvsr, "N")) {
+ ijobvr = 1;
+ ilvsr = FALSE_;
+ } else if (lsame_(jobvsr, "V")) {
+ ijobvr = 2;
+ ilvsr = TRUE_;
+ } else {
+ ijobvr = -1;
+ ilvsr = FALSE_;
+ }
+
+ wantst = lsame_(sort, "S");
+ wantsn = lsame_(sense, "N");
+ wantse = lsame_(sense, "E");
+ wantsv = lsame_(sense, "V");
+ wantsb = lsame_(sense, "B");
+ lquery = *lwork == -1 || *liwork == -1;
+ if (wantsn) {
+ ijob = 0;
+ } else if (wantse) {
+ ijob = 1;
+ } else if (wantsv) {
+ ijob = 2;
+ } else if (wantsb) {
+ ijob = 4;
+ }
+
+/* Test the input arguments */
+
+ *info = 0;
+ if (ijobvl <= 0) {
+ *info = -1;
+ } else if (ijobvr <= 0) {
+ *info = -2;
+ } else if (! wantst && ! lsame_(sort, "N")) {
+ *info = -3;
+ } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
+ wantsn) {
+ *info = -5;
+ } else if (*n < 0) {
+ *info = -6;
+ } else if (*lda < max(1,*n)) {
+ *info = -8;
+ } else if (*ldb < max(1,*n)) {
+ *info = -10;
+ } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
+ *info = -16;
+ } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
+ *info = -18;
+ }
+
+/* Compute workspace */
+/* (Note: Comments in the code beginning "Workspace:" describe the */
+/* minimal amount of workspace needed at that point in the code, */
+/* as well as the preferred amount for good performance. */
+/* NB refers to the optimal block size for the immediately */
+/* following subroutine, as returned by ILAENV.) */
+
+ if (*info == 0) {
+ if (*n > 0) {
+/* Computing MAX */
+ i__1 = *n << 3, i__2 = *n * 6 + 16;
+ minwrk = max(i__1,i__2);
+ maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
+ c__1, n, &c__0);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR",
+ " ", n, &c__1, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+ if (ilvsl) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR"
+ "GQR", " ", n, &c__1, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+ }
+ lwrk = maxwrk;
+ if (ijob >= 1) {
+/* Computing MAX */
+ i__1 = lwrk, i__2 = *n * *n / 2;
+ lwrk = max(i__1,i__2);
+ }
+ } else {
+ minwrk = 1;
+ maxwrk = 1;
+ lwrk = 1;
+ }
+ work[1] = (real) lwrk;
+ if (wantsn || *n == 0) {
+ liwmin = 1;
+ } else {
+ liwmin = *n + 6;
+ }
+ iwork[1] = liwmin;
+
+ if (*lwork < minwrk && ! lquery) {
+ *info = -22;
+ } else if (*liwork < liwmin && ! lquery) {
+ *info = -24;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SGGESX", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ *sdim = 0;
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = slamch_("P");
+ safmin = slamch_("S");
+ safmax = 1.f / safmin;
+ slabad_(&safmin, &safmax);
+ smlnum = sqrt(safmin) / eps;
+ bignum = 1.f / smlnum;
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
+ ilascl = FALSE_;
+ if (anrm > 0.f && anrm < smlnum) {
+ anrmto = smlnum;
+ ilascl = TRUE_;
+ } else if (anrm > bignum) {
+ anrmto = bignum;
+ ilascl = TRUE_;
+ }
+ if (ilascl) {
+ slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
+ ierr);
+ }
+
+/* Scale B if max element outside range [SMLNUM,BIGNUM] */
+
+ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
+ ilbscl = FALSE_;
+ if (bnrm > 0.f && bnrm < smlnum) {
+ bnrmto = smlnum;
+ ilbscl = TRUE_;
+ } else if (bnrm > bignum) {
+ bnrmto = bignum;
+ ilbscl = TRUE_;
+ }
+ if (ilbscl) {
+ slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
+ ierr);
+ }
+
+/* Permute the matrix to make it more nearly triangular */
+/* (Workspace: need 6*N + 2*N for permutation parameters) */
+
+ ileft = 1;
+ iright = *n + 1;
+ iwrk = iright + *n;
+ sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
+ ileft], &work[iright], &work[iwrk], &ierr);
+
+/* Reduce B to triangular form (QR decomposition of B) */
+/* (Workspace: need N, prefer N*NB) */
+
+ irows = ihi + 1 - ilo;
+ icols = *n + 1 - ilo;
+ itau = iwrk;
+ iwrk = itau + irows;
+ i__1 = *lwork + 1 - iwrk;
+ sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
+ iwrk], &i__1, &ierr);
+
+/* Apply the orthogonal transformation to matrix A */
+/* (Workspace: need N, prefer N*NB) */
+
+ i__1 = *lwork + 1 - iwrk;
+ sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
+ work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
+ ierr);
+
+/* Initialize VSL */
+/* (Workspace: need N, prefer N*NB) */
+
+ if (ilvsl) {
+ slaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl);
+ if (irows > 1) {
+ i__1 = irows - 1;
+ i__2 = irows - 1;
+ slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
+ ilo + 1 + ilo * vsl_dim1], ldvsl);
+ }
+ i__1 = *lwork + 1 - iwrk;
+ sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
+ work[itau], &work[iwrk], &i__1, &ierr);
+ }
+
+/* Initialize VSR */
+
+ if (ilvsr) {
+ slaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr);
+ }
+
+/* Reduce to generalized Hessenberg form */
+/* (Workspace: none needed) */
+
+ sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
+ ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
+
+ *sdim = 0;
+
+/* Perform QZ algorithm, computing Schur vectors if desired */
+/* (Workspace: need N) */
+
+ iwrk = itau;
+ i__1 = *lwork + 1 - iwrk;
+ shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
+ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
+, ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
+ if (ierr != 0) {
+ if (ierr > 0 && ierr <= *n) {
+ *info = ierr;
+ } else if (ierr > *n && ierr <= *n << 1) {
+ *info = ierr - *n;
+ } else {
+ *info = *n + 1;
+ }
+ goto L50;
+ }
+
+/* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */
+/* condition number(s) */
+/* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */
+/* otherwise, need 8*(N+1) ) */
+
+ if (wantst) {
+
+/* Undo scaling on eigenvalues before SELCTGing */
+
+ if (ilascl) {
+ slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
+ n, &ierr);
+ slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
+ n, &ierr);
+ }
+ if (ilbscl) {
+ slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
+ &ierr);
+ }
+
+/* Select eigenvalues */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
+/* L10: */
+ }
+
+/* Reorder eigenvalues, transform Generalized Schur vectors, and */
+/* compute reciprocal condition numbers */
+
+ i__1 = *lwork - iwrk + 1;
+ stgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
+ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
+ vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr,
+ dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr);
+
+ if (ijob >= 1) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
+ maxwrk = max(i__1,i__2);
+ }
+ if (ierr == -22) {
+
+/* not enough real workspace */
+
+ *info = -22;
+ } else {
+ if (ijob == 1 || ijob == 4) {
+ rconde[1] = pl;
+ rconde[2] = pr;
+ }
+ if (ijob == 2 || ijob == 4) {
+ rcondv[1] = dif[0];
+ rcondv[2] = dif[1];
+ }
+ if (ierr == 1) {
+ *info = *n + 3;
+ }
+ }
+
+ }
+
+/* Apply permutation to VSL and VSR */
+/* (Workspace: none needed) */
+
+ if (ilvsl) {
+ sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
+ vsl_offset], ldvsl, &ierr);
+ }
+
+ if (ilvsr) {
+ sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
+ vsr_offset], ldvsr, &ierr);
+ }
+
+/* Check if unscaling would cause over/underflow, if so, rescale */
+/* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
+/* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
+
+ if (ilascl) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (alphai[i__] != 0.f) {
+ if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
+ i__] > anrm / anrmto) {
+ work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__],
+ dabs(r__1));
+ beta[i__] *= work[1];
+ alphar[i__] *= work[1];
+ alphai[i__] *= work[1];
+ } else if (alphai[i__] / safmax > anrmto / anrm || safmin /
+ alphai[i__] > anrm / anrmto) {
+ work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
+ i__], dabs(r__1));
+ beta[i__] *= work[1];
+ alphar[i__] *= work[1];
+ alphai[i__] *= work[1];
+ }
+ }
+/* L20: */
+ }
+ }
+
+ if (ilbscl) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (alphai[i__] != 0.f) {
+ if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
+ > bnrm / bnrmto) {
+ work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], dabs(
+ r__1));
+ beta[i__] *= work[1];
+ alphar[i__] *= work[1];
+ alphai[i__] *= work[1];
+ }
+ }
+/* L25: */
+ }
+ }
+
+/* Undo scaling */
+
+ if (ilascl) {
+ slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
+ ierr);
+ slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
+ ierr);
+ slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
+ ierr);
+ }
+
+ if (ilbscl) {
+ slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
+ ierr);
+ slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
+ ierr);
+ }
+
+ if (wantst) {
+
+/* Check if reordering is correct */
+
+ lastsl = TRUE_;
+ lst2sl = TRUE_;
+ *sdim = 0;
+ ip = 0;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
+ if (alphai[i__] == 0.f) {
+ if (cursl) {
+ ++(*sdim);
+ }
+ ip = 0;
+ if (cursl && ! lastsl) {
+ *info = *n + 2;
+ }
+ } else {
+ if (ip == 1) {
+
+/* Last eigenvalue of conjugate pair */
+
+ cursl = cursl || lastsl;
+ lastsl = cursl;
+ if (cursl) {
+ *sdim += 2;
+ }
+ ip = -1;
+ if (cursl && ! lst2sl) {
+ *info = *n + 2;
+ }
+ } else {
+
+/* First eigenvalue of conjugate pair */
+
+ ip = 1;
+ }
+ }
+ lst2sl = lastsl;
+ lastsl = cursl;
+/* L40: */
+ }
+
+ }
+
+L50:
+
+ work[1] = (real) maxwrk;
+ iwork[1] = liwmin;
+
+ return 0;
+
+/* End of SGGESX */
+
+} /* sggesx_ */