diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgesdd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgesdd.c')
-rw-r--r-- | contrib/libs/clapack/sgesdd.c | 1611 |
1 files changed, 1611 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgesdd.c b/contrib/libs/clapack/sgesdd.c new file mode 100644 index 0000000000..b9680dafde --- /dev/null +++ b/contrib/libs/clapack/sgesdd.c @@ -0,0 +1,1611 @@ +/* sgesdd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__0 = 0; +static real c_b227 = 0.f; +static real c_b248 = 1.f; + +/* Subroutine */ int sgesdd_(char *jobz, integer *m, integer *n, real *a, + integer *lda, real *s, real *u, integer *ldu, real *vt, integer *ldvt, + real *work, integer *lwork, integer *iwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, + i__2, i__3; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, ie, il, ir, iu, blk; + real dum[1], eps; + integer ivt, iscl; + real anrm; + integer idum[1], ierr, itau; + extern logical lsame_(char *, char *); + integer chunk; + extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, + integer *, real *, real *, integer *, real *, integer *, real *, + real *, integer *); + integer minmn, wrkbl, itaup, itauq, mnthr; + logical wntqa; + integer nwork; + logical wntqn, wntqo, wntqs; + integer bdspac; + extern /* Subroutine */ int sbdsdc_(char *, char *, integer *, real *, + real *, real *, integer *, real *, integer *, real *, integer *, + real *, integer *, integer *), sgebrd_(integer *, + integer *, real *, integer *, real *, real *, real *, real *, + real *, integer *, integer *); + extern doublereal slamch_(char *), slange_(char *, integer *, + integer *, real *, integer *, real *); + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + real bignum; + extern /* Subroutine */ int sgelqf_(integer *, integer *, real *, integer + *, real *, real *, integer *, integer *), slascl_(char *, integer + *, integer *, real *, real *, integer *, integer *, real *, + integer *, integer *), sgeqrf_(integer *, integer *, real + *, integer *, real *, real *, integer *, integer *), slacpy_(char + *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, + real *, integer *), sorgbr_(char *, integer *, integer *, + integer *, real *, integer *, real *, real *, integer *, integer * +); + integer ldwrkl; + extern /* Subroutine */ int sormbr_(char *, char *, char *, integer *, + integer *, integer *, real *, integer *, real *, real *, integer * +, real *, integer *, integer *); + integer ldwrkr, minwrk, ldwrku, maxwrk; + extern /* Subroutine */ int sorglq_(integer *, integer *, integer *, real + *, integer *, real *, real *, integer *, integer *); + integer ldwkvt; + real smlnum; + logical wntqas; + extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real + *, integer *, real *, real *, integer *, integer *); + logical lquery; + + +/* -- LAPACK driver routine (version 3.2.1) -- */ +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ +/* March 2009 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SGESDD computes the singular value decomposition (SVD) of a real */ +/* M-by-N matrix A, optionally computing the left and right singular */ +/* vectors. If singular vectors are desired, it uses a */ +/* divide-and-conquer algorithm. */ + +/* The SVD is written */ + +/* A = U * SIGMA * transpose(V) */ + +/* where SIGMA is an M-by-N matrix which is zero except for its */ +/* min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */ +/* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */ +/* are the singular values of A; they are real and non-negative, and */ +/* are returned in descending order. The first min(m,n) columns of */ +/* U and V are the left and right singular vectors of A. */ + +/* Note that the routine returns VT = V**T, not V. */ + +/* The divide and conquer algorithm makes very mild assumptions about */ +/* floating point arithmetic. It will work on machines with a guard */ +/* digit in add/subtract, or on those binary machines without guard */ +/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ +/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ +/* without guard digits, but we know of none. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* Specifies options for computing all or part of the matrix U: */ +/* = 'A': all M columns of U and all N rows of V**T are */ +/* returned in the arrays U and VT; */ +/* = 'S': the first min(M,N) columns of U and the first */ +/* min(M,N) rows of V**T are returned in the arrays U */ +/* and VT; */ +/* = 'O': If M >= N, the first N columns of U are overwritten */ +/* on the array A and all rows of V**T are returned in */ +/* the array VT; */ +/* otherwise, all columns of U are returned in the */ +/* array U and the first M rows of V**T are overwritten */ +/* in the array A; */ +/* = 'N': no columns of U or rows of V**T are computed. */ + +/* M (input) INTEGER */ +/* The number of rows of the input matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the input matrix A. N >= 0. */ + +/* A (input/output) REAL array, dimension (LDA,N) */ +/* On entry, the M-by-N matrix A. */ +/* On exit, */ +/* if JOBZ = 'O', A is overwritten with the first N columns */ +/* of U (the left singular vectors, stored */ +/* columnwise) if M >= N; */ +/* A is overwritten with the first M rows */ +/* of V**T (the right singular vectors, stored */ +/* rowwise) otherwise. */ +/* if JOBZ .ne. 'O', the contents of A are destroyed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* S (output) REAL array, dimension (min(M,N)) */ +/* The singular values of A, sorted so that S(i) >= S(i+1). */ + +/* U (output) REAL array, dimension (LDU,UCOL) */ +/* UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */ +/* UCOL = min(M,N) if JOBZ = 'S'. */ +/* If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */ +/* orthogonal matrix U; */ +/* if JOBZ = 'S', U contains the first min(M,N) columns of U */ +/* (the left singular vectors, stored columnwise); */ +/* if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */ + +/* LDU (input) INTEGER */ +/* The leading dimension of the array U. LDU >= 1; if */ +/* JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */ + +/* VT (output) REAL array, dimension (LDVT,N) */ +/* If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */ +/* N-by-N orthogonal matrix V**T; */ +/* if JOBZ = 'S', VT contains the first min(M,N) rows of */ +/* V**T (the right singular vectors, stored rowwise); */ +/* if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */ + +/* LDVT (input) INTEGER */ +/* The leading dimension of the array VT. LDVT >= 1; if */ +/* JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */ +/* if JOBZ = 'S', LDVT >= min(M,N). */ + +/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= 1. */ +/* If JOBZ = 'N', */ +/* LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)). */ +/* If JOBZ = 'O', */ +/* LWORK >= 3*min(M,N) + */ +/* max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)). */ +/* If JOBZ = 'S' or 'A' */ +/* LWORK >= 3*min(M,N) + */ +/* max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)). */ +/* For good performance, LWORK should generally be larger. */ +/* If LWORK = -1 but other input arguments are legal, WORK(1) */ +/* returns the optimal LWORK. */ + +/* IWORK (workspace) INTEGER array, dimension (8*min(M,N)) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: SBDSDC did not converge, updating process failed. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Ming Gu and Huan Ren, Computer Science Division, University of */ +/* California at Berkeley, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --s; + u_dim1 = *ldu; + u_offset = 1 + u_dim1; + u -= u_offset; + vt_dim1 = *ldvt; + vt_offset = 1 + vt_dim1; + vt -= vt_offset; + --work; + --iwork; + + /* Function Body */ + *info = 0; + minmn = min(*m,*n); + wntqa = lsame_(jobz, "A"); + wntqs = lsame_(jobz, "S"); + wntqas = wntqa || wntqs; + wntqo = lsame_(jobz, "O"); + wntqn = lsame_(jobz, "N"); + lquery = *lwork == -1; + + if (! (wntqa || wntqs || wntqo || wntqn)) { + *info = -1; + } else if (*m < 0) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < * + m) { + *info = -8; + } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn || + wntqo && *m >= *n && *ldvt < *n) { + *info = -10; + } + +/* Compute workspace */ +/* (Note: Comments in the code beginning "Workspace:" describe the */ +/* minimal amount of workspace needed at that point in the code, */ +/* as well as the preferred amount for good performance. */ +/* NB refers to the optimal block size for the immediately */ +/* following subroutine, as returned by ILAENV.) */ + + if (*info == 0) { + minwrk = 1; + maxwrk = 1; + if (*m >= *n && minmn > 0) { + +/* Compute space needed for SBDSDC */ + + mnthr = (integer) (minmn * 11.f / 6.f); + if (wntqn) { + bdspac = *n * 7; + } else { + bdspac = *n * 3 * *n + (*n << 2); + } + if (*m >= mnthr) { + if (wntqn) { + +/* Path 1 (M much larger than N, JOBZ='N') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, + "SGEBRD", " ", n, n, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *n; + maxwrk = max(i__1,i__2); + minwrk = bdspac + *n; + } else if (wntqo) { + +/* Path 2 (M much larger than N, JOBZ='O') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "SORGQR", + " ", m, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, + "SGEBRD", " ", n, n, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "QLN", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "PRT", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *n * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + (*n << 1) * *n; + minwrk = bdspac + (*n << 1) * *n + *n * 3; + } else if (wntqs) { + +/* Path 3 (M much larger than N, JOBZ='S') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "SORGQR", + " ", m, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, + "SGEBRD", " ", n, n, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "QLN", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "PRT", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *n * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + *n * *n; + minwrk = bdspac + *n * *n + *n * 3; + } else if (wntqa) { + +/* Path 4 (M much larger than N, JOBZ='A') */ + + wrkbl = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n + *m * ilaenv_(&c__1, "SORGQR", + " ", m, m, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, + "SGEBRD", " ", n, n, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "QLN", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "PRT", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *n * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + *n * *n; + minwrk = bdspac + *n * *n + *n * 3; + } + } else { + +/* Path 5 (M at least N, but not much larger) */ + + wrkbl = *n * 3 + (*m + *n) * ilaenv_(&c__1, "SGEBRD", " ", m, + n, &c_n1, &c_n1); + if (wntqn) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *n * 3; + maxwrk = max(i__1,i__2); + minwrk = *n * 3 + max(*m,bdspac); + } else if (wntqo) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "QLN", m, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "PRT", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *n * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + *m * *n; +/* Computing MAX */ + i__1 = *m, i__2 = *n * *n + bdspac; + minwrk = *n * 3 + max(i__1,i__2); + } else if (wntqs) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "QLN", m, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "PRT", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *n * 3; + maxwrk = max(i__1,i__2); + minwrk = *n * 3 + max(*m,bdspac); + } else if (wntqa) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "QLN", m, m, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "SORMBR" +, "PRT", n, n, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = bdspac + *n * 3; + maxwrk = max(i__1,i__2); + minwrk = *n * 3 + max(*m,bdspac); + } + } + } else if (minmn > 0) { + +/* Compute space needed for SBDSDC */ + + mnthr = (integer) (minmn * 11.f / 6.f); + if (wntqn) { + bdspac = *m * 7; + } else { + bdspac = *m * 3 * *m + (*m << 2); + } + if (*n >= mnthr) { + if (wntqn) { + +/* Path 1t (N much larger than M, JOBZ='N') */ + + wrkbl = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, + "SGEBRD", " ", m, m, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m; + maxwrk = max(i__1,i__2); + minwrk = bdspac + *m; + } else if (wntqo) { + +/* Path 2t (N much larger than M, JOBZ='O') */ + + wrkbl = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "SORGLQ", + " ", m, n, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, + "SGEBRD", " ", m, m, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "QLN", m, m, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "PRT", m, m, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + (*m << 1) * *m; + minwrk = bdspac + (*m << 1) * *m + *m * 3; + } else if (wntqs) { + +/* Path 3t (N much larger than M, JOBZ='S') */ + + wrkbl = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "SORGLQ", + " ", m, n, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, + "SGEBRD", " ", m, m, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "QLN", m, m, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "PRT", m, m, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + *m * *m; + minwrk = bdspac + *m * *m + *m * 3; + } else if (wntqa) { + +/* Path 4t (N much larger than M, JOBZ='A') */ + + wrkbl = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m + *n * ilaenv_(&c__1, "SORGLQ", + " ", n, n, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * ilaenv_(&c__1, + "SGEBRD", " ", m, m, &c_n1, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "QLN", m, m, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "PRT", m, m, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + *m * *m; + minwrk = bdspac + *m * *m + *m * 3; + } + } else { + +/* Path 5t (N greater than M, but not much larger) */ + + wrkbl = *m * 3 + (*m + *n) * ilaenv_(&c__1, "SGEBRD", " ", m, + n, &c_n1, &c_n1); + if (wntqn) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m * 3; + maxwrk = max(i__1,i__2); + minwrk = *m * 3 + max(*n,bdspac); + } else if (wntqo) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "QLN", m, m, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "PRT", m, n, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m * 3; + wrkbl = max(i__1,i__2); + maxwrk = wrkbl + *m * *n; +/* Computing MAX */ + i__1 = *n, i__2 = *m * *m + bdspac; + minwrk = *m * 3 + max(i__1,i__2); + } else if (wntqs) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "QLN", m, m, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "PRT", m, n, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m * 3; + maxwrk = max(i__1,i__2); + minwrk = *m * 3 + max(*n,bdspac); + } else if (wntqa) { +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "QLN", m, m, n, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR" +, "PRT", n, n, m, &c_n1); + wrkbl = max(i__1,i__2); +/* Computing MAX */ + i__1 = wrkbl, i__2 = bdspac + *m * 3; + maxwrk = max(i__1,i__2); + minwrk = *m * 3 + max(*n,bdspac); + } + } + } + maxwrk = max(maxwrk,minwrk); + work[1] = (real) maxwrk; + + if (*lwork < minwrk && ! lquery) { + *info = -12; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("SGESDD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + return 0; + } + +/* Get machine constants */ + + eps = slamch_("P"); + smlnum = sqrt(slamch_("S")) / eps; + bignum = 1.f / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + anrm = slange_("M", m, n, &a[a_offset], lda, dum); + iscl = 0; + if (anrm > 0.f && anrm < smlnum) { + iscl = 1; + slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, & + ierr); + } else if (anrm > bignum) { + iscl = 1; + slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, & + ierr); + } + + if (*m >= *n) { + +/* A has at least as many rows as columns. If A has sufficiently */ +/* more rows than columns, first reduce using the QR */ +/* decomposition (if sufficient workspace available) */ + + if (*m >= mnthr) { + + if (wntqn) { + +/* Path 1 (M much larger than N, JOBZ='N') */ +/* No singular vectors to be computed */ + + itau = 1; + nwork = itau + *n; + +/* Compute A=Q*R */ +/* (Workspace: need 2*N, prefer N+N*NB) */ + + i__1 = *lwork - nwork + 1; + sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + +/* Zero out below R */ + + i__1 = *n - 1; + i__2 = *n - 1; + slaset_("L", &i__1, &i__2, &c_b227, &c_b227, &a[a_dim1 + 2], + lda); + ie = 1; + itauq = ie + *n; + itaup = itauq + *n; + nwork = itaup + *n; + +/* Bidiagonalize R in A */ +/* (Workspace: need 4*N, prefer 3*N+2*N*NB) */ + + i__1 = *lwork - nwork + 1; + sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + nwork = ie + *n; + +/* Perform bidiagonal SVD, computing singular values only */ +/* (Workspace: need N+BDSPAC) */ + + sbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1, + dum, idum, &work[nwork], &iwork[1], info); + + } else if (wntqo) { + +/* Path 2 (M much larger than N, JOBZ = 'O') */ +/* N left singular vectors to be overwritten on A and */ +/* N right singular vectors to be computed in VT */ + + ir = 1; + +/* WORK(IR) is LDWRKR by N */ + + if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) { + ldwrkr = *lda; + } else { + ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n; + } + itau = ir + ldwrkr * *n; + nwork = itau + *n; + +/* Compute A=Q*R */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__1 = *lwork - nwork + 1; + sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + +/* Copy R to WORK(IR), zeroing out below it */ + + slacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); + i__1 = *n - 1; + i__2 = *n - 1; + slaset_("L", &i__1, &i__2, &c_b227, &c_b227, &work[ir + 1], & + ldwrkr); + +/* Generate Q in A */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__1 = *lwork - nwork + 1; + sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork], + &i__1, &ierr); + ie = itau; + itauq = ie + *n; + itaup = itauq + *n; + nwork = itaup + *n; + +/* Bidiagonalize R in VT, copying result to WORK(IR) */ +/* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ + + i__1 = *lwork - nwork + 1; + sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + +/* WORK(IU) is N by N */ + + iu = nwork; + nwork = iu + *n * *n; + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in WORK(IU) and computing right */ +/* singular vectors of bidiagonal matrix in VT */ +/* (Workspace: need N+N*N+BDSPAC) */ + + sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Overwrite WORK(IU) by left singular vectors of R */ +/* and VT by right singular vectors of R */ +/* (Workspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */ + + i__1 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[ + itauq], &work[iu], n, &work[nwork], &i__1, &ierr); + i__1 = *lwork - nwork + 1; + sormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + +/* Multiply Q in A by left singular vectors of R in */ +/* WORK(IU), storing result in WORK(IR) and copying to A */ +/* (Workspace: need 2*N*N, prefer N*N+M*N) */ + + i__1 = *m; + i__2 = ldwrkr; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += + i__2) { +/* Computing MIN */ + i__3 = *m - i__ + 1; + chunk = min(i__3,ldwrkr); + sgemm_("N", "N", &chunk, n, n, &c_b248, &a[i__ + a_dim1], + lda, &work[iu], n, &c_b227, &work[ir], &ldwrkr); + slacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ + + a_dim1], lda); +/* L10: */ + } + + } else if (wntqs) { + +/* Path 3 (M much larger than N, JOBZ='S') */ +/* N left singular vectors to be computed in U and */ +/* N right singular vectors to be computed in VT */ + + ir = 1; + +/* WORK(IR) is N by N */ + + ldwrkr = *n; + itau = ir + ldwrkr * *n; + nwork = itau + *n; + +/* Compute A=Q*R */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + +/* Copy R to WORK(IR), zeroing out below it */ + + slacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); + i__2 = *n - 1; + i__1 = *n - 1; + slaset_("L", &i__2, &i__1, &c_b227, &c_b227, &work[ir + 1], & + ldwrkr); + +/* Generate Q in A */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork], + &i__2, &ierr); + ie = itau; + itauq = ie + *n; + itaup = itauq + *n; + nwork = itaup + *n; + +/* Bidiagonalize R in WORK(IR) */ +/* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ + + i__2 = *lwork - nwork + 1; + sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagoal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in VT */ +/* (Workspace: need N+BDSPAC) */ + + sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Overwrite U by left singular vectors of R and VT */ +/* by right singular vectors of R */ +/* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + + i__2 = *lwork - nwork + 1; + sormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + +/* Multiply Q in A by left singular vectors of R in */ +/* WORK(IR), storing result in U */ +/* (Workspace: need N*N) */ + + slacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr); + sgemm_("N", "N", m, n, n, &c_b248, &a[a_offset], lda, &work[ + ir], &ldwrkr, &c_b227, &u[u_offset], ldu); + + } else if (wntqa) { + +/* Path 4 (M much larger than N, JOBZ='A') */ +/* M left singular vectors to be computed in U and */ +/* N right singular vectors to be computed in VT */ + + iu = 1; + +/* WORK(IU) is N by N */ + + ldwrku = *n; + itau = iu + ldwrku * *n; + nwork = itau + *n; + +/* Compute A=Q*R, copying result to U */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); + +/* Generate Q in U */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + i__2 = *lwork - nwork + 1; + sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork], + &i__2, &ierr); + +/* Produce R in A, zeroing out other entries */ + + i__2 = *n - 1; + i__1 = *n - 1; + slaset_("L", &i__2, &i__1, &c_b227, &c_b227, &a[a_dim1 + 2], + lda); + ie = itau; + itauq = ie + *n; + itaup = itauq + *n; + nwork = itaup + *n; + +/* Bidiagonalize R in A */ +/* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */ + + i__2 = *lwork - nwork + 1; + sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in WORK(IU) and computing right */ +/* singular vectors of bidiagonal matrix in VT */ +/* (Workspace: need N+N*N+BDSPAC) */ + + sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Overwrite WORK(IU) by left singular vectors of R and VT */ +/* by right singular vectors of R */ +/* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[ + itauq], &work[iu], &ldwrku, &work[nwork], &i__2, & + ierr); + i__2 = *lwork - nwork + 1; + sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + +/* Multiply Q in U by left singular vectors of R in */ +/* WORK(IU), storing result in A */ +/* (Workspace: need N*N) */ + + sgemm_("N", "N", m, n, n, &c_b248, &u[u_offset], ldu, &work[ + iu], &ldwrku, &c_b227, &a[a_offset], lda); + +/* Copy left singular vectors of A from A to U */ + + slacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); + + } + + } else { + +/* M .LT. MNTHR */ + +/* Path 5 (M at least N, but not much larger) */ +/* Reduce to bidiagonal form without QR decomposition */ + + ie = 1; + itauq = ie + *n; + itaup = itauq + *n; + nwork = itaup + *n; + +/* Bidiagonalize A */ +/* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB) */ + + i__2 = *lwork - nwork + 1; + sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & + work[itaup], &work[nwork], &i__2, &ierr); + if (wntqn) { + +/* Perform bidiagonal SVD, only computing singular values */ +/* (Workspace: need N+BDSPAC) */ + + sbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1, + dum, idum, &work[nwork], &iwork[1], info); + } else if (wntqo) { + iu = nwork; + if (*lwork >= *m * *n + *n * 3 + bdspac) { + +/* WORK( IU ) is M by N */ + + ldwrku = *m; + nwork = iu + ldwrku * *n; + slaset_("F", m, n, &c_b227, &c_b227, &work[iu], &ldwrku); + } else { + +/* WORK( IU ) is N by N */ + + ldwrku = *n; + nwork = iu + ldwrku * *n; + +/* WORK(IR) is LDWRKR by N */ + + ir = nwork; + ldwrkr = (*lwork - *n * *n - *n * 3) / *n; + } + nwork = iu + ldwrku * *n; + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in WORK(IU) and computing right */ +/* singular vectors of bidiagonal matrix in VT */ +/* (Workspace: need N+N*N+BDSPAC) */ + + sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, & + vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[ + 1], info); + +/* Overwrite VT by right singular vectors of A */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + + if (*lwork >= *m * *n + *n * 3 + bdspac) { + +/* Overwrite WORK(IU) by left singular vectors of A */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[ + itauq], &work[iu], &ldwrku, &work[nwork], &i__2, & + ierr); + +/* Copy left singular vectors of A from WORK(IU) to A */ + + slacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda); + } else { + +/* Generate Q in A */ +/* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */ + + i__2 = *lwork - nwork + 1; + sorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], & + work[nwork], &i__2, &ierr); + +/* Multiply Q in A by left singular vectors of */ +/* bidiagonal matrix in WORK(IU), storing result in */ +/* WORK(IR) and copying to A */ +/* (Workspace: need 2*N*N, prefer N*N+M*N) */ + + i__2 = *m; + i__1 = ldwrkr; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += + i__1) { +/* Computing MIN */ + i__3 = *m - i__ + 1; + chunk = min(i__3,ldwrkr); + sgemm_("N", "N", &chunk, n, n, &c_b248, &a[i__ + + a_dim1], lda, &work[iu], &ldwrku, &c_b227, & + work[ir], &ldwrkr); + slacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ + + a_dim1], lda); +/* L20: */ + } + } + + } else if (wntqs) { + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in VT */ +/* (Workspace: need N+BDSPAC) */ + + slaset_("F", m, n, &c_b227, &c_b227, &u[u_offset], ldu); + sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Overwrite U by left singular vectors of A and VT */ +/* by right singular vectors of A */ +/* (Workspace: need 3*N, prefer 2*N+N*NB) */ + + i__1 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + i__1 = *lwork - nwork + 1; + sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + } else if (wntqa) { + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in VT */ +/* (Workspace: need N+BDSPAC) */ + + slaset_("F", m, m, &c_b227, &c_b227, &u[u_offset], ldu); + sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Set the right corner of U to identity matrix */ + + if (*m > *n) { + i__1 = *m - *n; + i__2 = *m - *n; + slaset_("F", &i__1, &i__2, &c_b227, &c_b248, &u[*n + 1 + ( + *n + 1) * u_dim1], ldu); + } + +/* Overwrite U by left singular vectors of A and VT */ +/* by right singular vectors of A */ +/* (Workspace: need N*N+2*N+M, prefer N*N+2*N+M*NB) */ + + i__1 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + i__1 = *lwork - nwork + 1; + sormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + } + + } + + } else { + +/* A has more columns than rows. If A has sufficiently more */ +/* columns than rows, first reduce using the LQ decomposition (if */ +/* sufficient workspace available) */ + + if (*n >= mnthr) { + + if (wntqn) { + +/* Path 1t (N much larger than M, JOBZ='N') */ +/* No singular vectors to be computed */ + + itau = 1; + nwork = itau + *m; + +/* Compute A=L*Q */ +/* (Workspace: need 2*M, prefer M+M*NB) */ + + i__1 = *lwork - nwork + 1; + sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + +/* Zero out above L */ + + i__1 = *m - 1; + i__2 = *m - 1; + slaset_("U", &i__1, &i__2, &c_b227, &c_b227, &a[(a_dim1 << 1) + + 1], lda); + ie = 1; + itauq = ie + *m; + itaup = itauq + *m; + nwork = itaup + *m; + +/* Bidiagonalize L in A */ +/* (Workspace: need 4*M, prefer 3*M+2*M*NB) */ + + i__1 = *lwork - nwork + 1; + sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + nwork = ie + *m; + +/* Perform bidiagonal SVD, computing singular values only */ +/* (Workspace: need M+BDSPAC) */ + + sbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1, + dum, idum, &work[nwork], &iwork[1], info); + + } else if (wntqo) { + +/* Path 2t (N much larger than M, JOBZ='O') */ +/* M right singular vectors to be overwritten on A and */ +/* M left singular vectors to be computed in U */ + + ivt = 1; + +/* IVT is M by M */ + + il = ivt + *m * *m; + if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) { + +/* WORK(IL) is M by N */ + + ldwrkl = *m; + chunk = *n; + } else { + ldwrkl = *m; + chunk = (*lwork - *m * *m) / *m; + } + itau = il + ldwrkl * *m; + nwork = itau + *m; + +/* Compute A=L*Q */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__1 = *lwork - nwork + 1; + sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__1, &ierr); + +/* Copy L to WORK(IL), zeroing about above it */ + + slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl); + i__1 = *m - 1; + i__2 = *m - 1; + slaset_("U", &i__1, &i__2, &c_b227, &c_b227, &work[il + + ldwrkl], &ldwrkl); + +/* Generate Q in A */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__1 = *lwork - nwork + 1; + sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork], + &i__1, &ierr); + ie = itau; + itauq = ie + *m; + itaup = itauq + *m; + nwork = itaup + *m; + +/* Bidiagonalize L in WORK(IL) */ +/* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ + + i__1 = *lwork - nwork + 1; + sgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__1, &ierr); + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U, and computing right singular */ +/* vectors of bidiagonal matrix in WORK(IVT) */ +/* (Workspace: need M+M*M+BDSPAC) */ + + sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, & + work[ivt], m, dum, idum, &work[nwork], &iwork[1], + info); + +/* Overwrite U by left singular vectors of L and WORK(IVT) */ +/* by right singular vectors of L */ +/* (Workspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */ + + i__1 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + i__1 = *lwork - nwork + 1; + sormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[ + itaup], &work[ivt], m, &work[nwork], &i__1, &ierr); + +/* Multiply right singular vectors of L in WORK(IVT) by Q */ +/* in A, storing result in WORK(IL) and copying to A */ +/* (Workspace: need 2*M*M, prefer M*M+M*N) */ + + i__1 = *n; + i__2 = chunk; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += + i__2) { +/* Computing MIN */ + i__3 = *n - i__ + 1; + blk = min(i__3,chunk); + sgemm_("N", "N", m, &blk, m, &c_b248, &work[ivt], m, &a[ + i__ * a_dim1 + 1], lda, &c_b227, &work[il], & + ldwrkl); + slacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1 + + 1], lda); +/* L30: */ + } + + } else if (wntqs) { + +/* Path 3t (N much larger than M, JOBZ='S') */ +/* M right singular vectors to be computed in VT and */ +/* M left singular vectors to be computed in U */ + + il = 1; + +/* WORK(IL) is M by M */ + + ldwrkl = *m; + itau = il + ldwrkl * *m; + nwork = itau + *m; + +/* Compute A=L*Q */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + +/* Copy L to WORK(IL), zeroing out above it */ + + slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl); + i__2 = *m - 1; + i__1 = *m - 1; + slaset_("U", &i__2, &i__1, &c_b227, &c_b227, &work[il + + ldwrkl], &ldwrkl); + +/* Generate Q in A */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork], + &i__2, &ierr); + ie = itau; + itauq = ie + *m; + itaup = itauq + *m; + nwork = itaup + *m; + +/* Bidiagonalize L in WORK(IU), copying result to U */ +/* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ + + i__2 = *lwork - nwork + 1; + sgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in VT */ +/* (Workspace: need M+BDSPAC) */ + + sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Overwrite U by left singular vectors of L and VT */ +/* by right singular vectors of L */ +/* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + i__2 = *lwork - nwork + 1; + sormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, & + ierr); + +/* Multiply right singular vectors of L in WORK(IL) by */ +/* Q in A, storing result in VT */ +/* (Workspace: need M*M) */ + + slacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl); + sgemm_("N", "N", m, n, m, &c_b248, &work[il], &ldwrkl, &a[ + a_offset], lda, &c_b227, &vt[vt_offset], ldvt); + + } else if (wntqa) { + +/* Path 4t (N much larger than M, JOBZ='A') */ +/* N right singular vectors to be computed in VT and */ +/* M left singular vectors to be computed in U */ + + ivt = 1; + +/* WORK(IVT) is M by M */ + + ldwkvt = *m; + itau = ivt + ldwkvt * *m; + nwork = itau + *m; + +/* Compute A=L*Q, copying result to VT */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], & + i__2, &ierr); + slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + +/* Generate Q in VT */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[ + nwork], &i__2, &ierr); + +/* Produce L in A, zeroing out other entries */ + + i__2 = *m - 1; + i__1 = *m - 1; + slaset_("U", &i__2, &i__1, &c_b227, &c_b227, &a[(a_dim1 << 1) + + 1], lda); + ie = itau; + itauq = ie + *m; + itaup = itauq + *m; + nwork = itaup + *m; + +/* Bidiagonalize L in A */ +/* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ + + i__2 = *lwork - nwork + 1; + sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[ + itauq], &work[itaup], &work[nwork], &i__2, &ierr); + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in WORK(IVT) */ +/* (Workspace: need M+M*M+BDSPAC) */ + + sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, & + work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1] +, info); + +/* Overwrite U by left singular vectors of L and WORK(IVT) */ +/* by right singular vectors of L */ +/* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + i__2 = *lwork - nwork + 1; + sormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[ + itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, & + ierr); + +/* Multiply right singular vectors of L in WORK(IVT) by */ +/* Q in VT, storing result in A */ +/* (Workspace: need M*M) */ + + sgemm_("N", "N", m, n, m, &c_b248, &work[ivt], &ldwkvt, &vt[ + vt_offset], ldvt, &c_b227, &a[a_offset], lda); + +/* Copy right singular vectors of A from A to VT */ + + slacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); + + } + + } else { + +/* N .LT. MNTHR */ + +/* Path 5t (N greater than M, but not much larger) */ +/* Reduce to bidiagonal form without LQ decomposition */ + + ie = 1; + itauq = ie + *m; + itaup = itauq + *m; + nwork = itaup + *m; + +/* Bidiagonalize A */ +/* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */ + + i__2 = *lwork - nwork + 1; + sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & + work[itaup], &work[nwork], &i__2, &ierr); + if (wntqn) { + +/* Perform bidiagonal SVD, only computing singular values */ +/* (Workspace: need M+BDSPAC) */ + + sbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1, + dum, idum, &work[nwork], &iwork[1], info); + } else if (wntqo) { + ldwkvt = *m; + ivt = nwork; + if (*lwork >= *m * *n + *m * 3 + bdspac) { + +/* WORK( IVT ) is M by N */ + + slaset_("F", m, n, &c_b227, &c_b227, &work[ivt], &ldwkvt); + nwork = ivt + ldwkvt * *n; + } else { + +/* WORK( IVT ) is M by M */ + + nwork = ivt + ldwkvt * *m; + il = nwork; + +/* WORK(IL) is M by CHUNK */ + + chunk = (*lwork - *m * *m - *m * 3) / *m; + } + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in WORK(IVT) */ +/* (Workspace: need M*M+BDSPAC) */ + + sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, & + work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1] +, info); + +/* Overwrite U by left singular vectors of A */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr); + + if (*lwork >= *m * *n + *m * 3 + bdspac) { + +/* Overwrite WORK(IVT) by left singular vectors of A */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[ + itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, + &ierr); + +/* Copy right singular vectors of A from WORK(IVT) to A */ + + slacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda); + } else { + +/* Generate P**T in A */ +/* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */ + + i__2 = *lwork - nwork + 1; + sorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], & + work[nwork], &i__2, &ierr); + +/* Multiply Q in A by right singular vectors of */ +/* bidiagonal matrix in WORK(IVT), storing result in */ +/* WORK(IL) and copying to A */ +/* (Workspace: need 2*M*M, prefer M*M+M*N) */ + + i__2 = *n; + i__1 = chunk; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += + i__1) { +/* Computing MIN */ + i__3 = *n - i__ + 1; + blk = min(i__3,chunk); + sgemm_("N", "N", m, &blk, m, &c_b248, &work[ivt], & + ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b227, & + work[il], m); + slacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 + + 1], lda); +/* L40: */ + } + } + } else if (wntqs) { + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in VT */ +/* (Workspace: need M+BDSPAC) */ + + slaset_("F", m, n, &c_b227, &c_b227, &vt[vt_offset], ldvt); + sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Overwrite U by left singular vectors of A and VT */ +/* by right singular vectors of A */ +/* (Workspace: need 3*M, prefer 2*M+M*NB) */ + + i__1 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + i__1 = *lwork - nwork + 1; + sormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + } else if (wntqa) { + +/* Perform bidiagonal SVD, computing left singular vectors */ +/* of bidiagonal matrix in U and computing right singular */ +/* vectors of bidiagonal matrix in VT */ +/* (Workspace: need M+BDSPAC) */ + + slaset_("F", n, n, &c_b227, &c_b227, &vt[vt_offset], ldvt); + sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[ + vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], + info); + +/* Set the right corner of VT to identity matrix */ + + if (*n > *m) { + i__1 = *n - *m; + i__2 = *n - *m; + slaset_("F", &i__1, &i__2, &c_b227, &c_b248, &vt[*m + 1 + + (*m + 1) * vt_dim1], ldvt); + } + +/* Overwrite U by left singular vectors of A and VT */ +/* by right singular vectors of A */ +/* (Workspace: need 2*M+N, prefer 2*M+N*NB) */ + + i__1 = *lwork - nwork + 1; + sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[ + itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr); + i__1 = *lwork - nwork + 1; + sormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[ + itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, & + ierr); + } + + } + + } + +/* Undo scaling if necessary */ + + if (iscl == 1) { + if (anrm > bignum) { + slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & + minmn, &ierr); + } + if (anrm < smlnum) { + slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & + minmn, &ierr); + } + } + +/* Return optimal workspace in WORK(1) */ + + work[1] = (real) maxwrk; + + return 0; + +/* End of SGESDD */ + +} /* sgesdd_ */ |