aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sgeqpf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgeqpf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgeqpf.c')
-rw-r--r--contrib/libs/clapack/sgeqpf.c303
1 files changed, 303 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgeqpf.c b/contrib/libs/clapack/sgeqpf.c
new file mode 100644
index 0000000000..1610cfdb6d
--- /dev/null
+++ b/contrib/libs/clapack/sgeqpf.c
@@ -0,0 +1,303 @@
+/* sgeqpf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int sgeqpf_(integer *m, integer *n, real *a, integer *lda,
+ integer *jpvt, real *tau, real *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ real r__1, r__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, ma, mn;
+ real aii;
+ integer pvt;
+ real temp, temp2;
+ extern doublereal snrm2_(integer *, real *, integer *);
+ real tol3z;
+ extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
+ integer *, real *, real *, integer *, real *);
+ integer itemp;
+ extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
+ integer *), sgeqr2_(integer *, integer *, real *, integer *, real
+ *, real *, integer *), sorm2r_(char *, char *, integer *, integer
+ *, integer *, real *, integer *, real *, real *, integer *, real *
+, integer *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer isamax_(integer *, real *, integer *);
+ extern /* Subroutine */ int slarfp_(integer *, real *, real *, integer *,
+ real *);
+
+
+/* -- LAPACK deprecated driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* This routine is deprecated and has been replaced by routine SGEQP3. */
+
+/* SGEQPF computes a QR factorization with column pivoting of a */
+/* real M-by-N matrix A: A*P = Q*R. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0 */
+
+/* A (input/output) REAL array, dimension (LDA,N) */
+/* On entry, the M-by-N matrix A. */
+/* On exit, the upper triangle of the array contains the */
+/* min(M,N)-by-N upper triangular matrix R; the elements */
+/* below the diagonal, together with the array TAU, */
+/* represent the orthogonal matrix Q as a product of */
+/* min(m,n) elementary reflectors. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* JPVT (input/output) INTEGER array, dimension (N) */
+/* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
+/* to the front of A*P (a leading column); if JPVT(i) = 0, */
+/* the i-th column of A is a free column. */
+/* On exit, if JPVT(i) = k, then the i-th column of A*P */
+/* was the k-th column of A. */
+
+/* TAU (output) REAL array, dimension (min(M,N)) */
+/* The scalar factors of the elementary reflectors. */
+
+/* WORK (workspace) REAL array, dimension (3*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* The matrix Q is represented as a product of elementary reflectors */
+
+/* Q = H(1) H(2) . . . H(n) */
+
+/* Each H(i) has the form */
+
+/* H = I - tau * v * v' */
+
+/* where tau is a real scalar, and v is a real vector with */
+/* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
+
+/* The matrix P is represented in jpvt as follows: If */
+/* jpvt(j) = i */
+/* then the jth column of P is the ith canonical unit vector. */
+
+/* Partial column norm updating strategy modified by */
+/* Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
+/* University of Zagreb, Croatia. */
+/* June 2006. */
+/* For more details see LAPACK Working Note 176. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --jpvt;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SGEQPF", &i__1);
+ return 0;
+ }
+
+ mn = min(*m,*n);
+ tol3z = sqrt(slamch_("Epsilon"));
+
+/* Move initial columns up front */
+
+ itemp = 1;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (jpvt[i__] != 0) {
+ if (i__ != itemp) {
+ sswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
+ &c__1);
+ jpvt[i__] = jpvt[itemp];
+ jpvt[itemp] = i__;
+ } else {
+ jpvt[i__] = i__;
+ }
+ ++itemp;
+ } else {
+ jpvt[i__] = i__;
+ }
+/* L10: */
+ }
+ --itemp;
+
+/* Compute the QR factorization and update remaining columns */
+
+ if (itemp > 0) {
+ ma = min(itemp,*m);
+ sgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
+ if (ma < *n) {
+ i__1 = *n - ma;
+ sorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
+ tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info);
+ }
+ }
+
+ if (itemp < mn) {
+
+/* Initialize partial column norms. The first n elements of */
+/* work store the exact column norms. */
+
+ i__1 = *n;
+ for (i__ = itemp + 1; i__ <= i__1; ++i__) {
+ i__2 = *m - itemp;
+ work[i__] = snrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
+ work[*n + i__] = work[i__];
+/* L20: */
+ }
+
+/* Compute factorization */
+
+ i__1 = mn;
+ for (i__ = itemp + 1; i__ <= i__1; ++i__) {
+
+/* Determine ith pivot column and swap if necessary */
+
+ i__2 = *n - i__ + 1;
+ pvt = i__ - 1 + isamax_(&i__2, &work[i__], &c__1);
+
+ if (pvt != i__) {
+ sswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
+ c__1);
+ itemp = jpvt[pvt];
+ jpvt[pvt] = jpvt[i__];
+ jpvt[i__] = itemp;
+ work[pvt] = work[i__];
+ work[*n + pvt] = work[*n + i__];
+ }
+
+/* Generate elementary reflector H(i) */
+
+ if (i__ < *m) {
+ i__2 = *m - i__ + 1;
+ slarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ *
+ a_dim1], &c__1, &tau[i__]);
+ } else {
+ slarfp_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
+ c__1, &tau[*m]);
+ }
+
+ if (i__ < *n) {
+
+/* Apply H(i) to A(i:m,i+1:n) from the left */
+
+ aii = a[i__ + i__ * a_dim1];
+ a[i__ + i__ * a_dim1] = 1.f;
+ i__2 = *m - i__ + 1;
+ i__3 = *n - i__;
+ slarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
+ tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
+ n << 1) + 1]);
+ a[i__ + i__ * a_dim1] = aii;
+ }
+
+/* Update partial column norms */
+
+ i__2 = *n;
+ for (j = i__ + 1; j <= i__2; ++j) {
+ if (work[j] != 0.f) {
+
+/* NOTE: The following 4 lines follow from the analysis in */
+/* Lapack Working Note 176. */
+
+ temp = (r__1 = a[i__ + j * a_dim1], dabs(r__1)) / work[j];
+/* Computing MAX */
+ r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
+ temp = dmax(r__1,r__2);
+/* Computing 2nd power */
+ r__1 = work[j] / work[*n + j];
+ temp2 = temp * (r__1 * r__1);
+ if (temp2 <= tol3z) {
+ if (*m - i__ > 0) {
+ i__3 = *m - i__;
+ work[j] = snrm2_(&i__3, &a[i__ + 1 + j * a_dim1],
+ &c__1);
+ work[*n + j] = work[j];
+ } else {
+ work[j] = 0.f;
+ work[*n + j] = 0.f;
+ }
+ } else {
+ work[j] *= sqrt(temp);
+ }
+ }
+/* L30: */
+ }
+
+/* L40: */
+ }
+ }
+ return 0;
+
+/* End of SGEQPF */
+
+} /* sgeqpf_ */