diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgeevx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgeevx.c')
-rw-r--r-- | contrib/libs/clapack/sgeevx.c | 696 |
1 files changed, 696 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgeevx.c b/contrib/libs/clapack/sgeevx.c new file mode 100644 index 0000000000..2e94a12fec --- /dev/null +++ b/contrib/libs/clapack/sgeevx.c @@ -0,0 +1,696 @@ +/* sgeevx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c__0 = 0; +static integer c_n1 = -1; + +/* Subroutine */ int sgeevx_(char *balanc, char *jobvl, char *jobvr, char * + sense, integer *n, real *a, integer *lda, real *wr, real *wi, real * + vl, integer *ldvl, real *vr, integer *ldvr, integer *ilo, integer * + ihi, real *scale, real *abnrm, real *rconde, real *rcondv, real *work, + integer *lwork, integer *iwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, + i__2, i__3; + real r__1, r__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, k; + real r__, cs, sn; + char job[1]; + real scl, dum[1], eps; + char side[1]; + real anrm; + integer ierr, itau, iwrk, nout; + extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, + integer *, real *, real *); + extern doublereal snrm2_(integer *, real *, integer *); + integer icond; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + extern doublereal slapy2_(real *, real *); + extern /* Subroutine */ int slabad_(real *, real *); + logical scalea; + real cscale; + extern /* Subroutine */ int sgebak_(char *, char *, integer *, integer *, + integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *, + integer *, integer *, real *, integer *); + extern doublereal slamch_(char *), slange_(char *, integer *, + integer *, real *, integer *, real *); + extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real + *, integer *, real *, real *, integer *, integer *), xerbla_(char + *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + logical select[1]; + real bignum; + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *); + extern integer isamax_(integer *, real *, integer *); + extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, + integer *, real *, integer *), slartg_(real *, real *, + real *, real *, real *), sorghr_(integer *, integer *, integer *, + real *, integer *, real *, real *, integer *, integer *), shseqr_( + char *, char *, integer *, integer *, integer *, real *, integer * +, real *, real *, real *, integer *, real *, integer *, integer *), strevc_(char *, char *, logical *, integer *, + real *, integer *, real *, integer *, real *, integer *, integer * +, integer *, real *, integer *); + integer minwrk, maxwrk; + extern /* Subroutine */ int strsna_(char *, char *, logical *, integer *, + real *, integer *, real *, integer *, real *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *, + integer *); + logical wantvl, wntsnb; + integer hswork; + logical wntsne; + real smlnum; + logical lquery, wantvr, wntsnn, wntsnv; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SGEEVX computes for an N-by-N real nonsymmetric matrix A, the */ +/* eigenvalues and, optionally, the left and/or right eigenvectors. */ + +/* Optionally also, it computes a balancing transformation to improve */ +/* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */ +/* SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */ +/* (RCONDE), and reciprocal condition numbers for the right */ +/* eigenvectors (RCONDV). */ + +/* The right eigenvector v(j) of A satisfies */ +/* A * v(j) = lambda(j) * v(j) */ +/* where lambda(j) is its eigenvalue. */ +/* The left eigenvector u(j) of A satisfies */ +/* u(j)**H * A = lambda(j) * u(j)**H */ +/* where u(j)**H denotes the conjugate transpose of u(j). */ + +/* The computed eigenvectors are normalized to have Euclidean norm */ +/* equal to 1 and largest component real. */ + +/* Balancing a matrix means permuting the rows and columns to make it */ +/* more nearly upper triangular, and applying a diagonal similarity */ +/* transformation D * A * D**(-1), where D is a diagonal matrix, to */ +/* make its rows and columns closer in norm and the condition numbers */ +/* of its eigenvalues and eigenvectors smaller. The computed */ +/* reciprocal condition numbers correspond to the balanced matrix. */ +/* Permuting rows and columns will not change the condition numbers */ +/* (in exact arithmetic) but diagonal scaling will. For further */ +/* explanation of balancing, see section 4.10.2 of the LAPACK */ +/* Users' Guide. */ + +/* Arguments */ +/* ========= */ + +/* BALANC (input) CHARACTER*1 */ +/* Indicates how the input matrix should be diagonally scaled */ +/* and/or permuted to improve the conditioning of its */ +/* eigenvalues. */ +/* = 'N': Do not diagonally scale or permute; */ +/* = 'P': Perform permutations to make the matrix more nearly */ +/* upper triangular. Do not diagonally scale; */ +/* = 'S': Diagonally scale the matrix, i.e. replace A by */ +/* D*A*D**(-1), where D is a diagonal matrix chosen */ +/* to make the rows and columns of A more equal in */ +/* norm. Do not permute; */ +/* = 'B': Both diagonally scale and permute A. */ + +/* Computed reciprocal condition numbers will be for the matrix */ +/* after balancing and/or permuting. Permuting does not change */ +/* condition numbers (in exact arithmetic), but balancing does. */ + +/* JOBVL (input) CHARACTER*1 */ +/* = 'N': left eigenvectors of A are not computed; */ +/* = 'V': left eigenvectors of A are computed. */ +/* If SENSE = 'E' or 'B', JOBVL must = 'V'. */ + +/* JOBVR (input) CHARACTER*1 */ +/* = 'N': right eigenvectors of A are not computed; */ +/* = 'V': right eigenvectors of A are computed. */ +/* If SENSE = 'E' or 'B', JOBVR must = 'V'. */ + +/* SENSE (input) CHARACTER*1 */ +/* Determines which reciprocal condition numbers are computed. */ +/* = 'N': None are computed; */ +/* = 'E': Computed for eigenvalues only; */ +/* = 'V': Computed for right eigenvectors only; */ +/* = 'B': Computed for eigenvalues and right eigenvectors. */ + +/* If SENSE = 'E' or 'B', both left and right eigenvectors */ +/* must also be computed (JOBVL = 'V' and JOBVR = 'V'). */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) REAL array, dimension (LDA,N) */ +/* On entry, the N-by-N matrix A. */ +/* On exit, A has been overwritten. If JOBVL = 'V' or */ +/* JOBVR = 'V', A contains the real Schur form of the balanced */ +/* version of the input matrix A. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* WR (output) REAL array, dimension (N) */ +/* WI (output) REAL array, dimension (N) */ +/* WR and WI contain the real and imaginary parts, */ +/* respectively, of the computed eigenvalues. Complex */ +/* conjugate pairs of eigenvalues will appear consecutively */ +/* with the eigenvalue having the positive imaginary part */ +/* first. */ + +/* VL (output) REAL array, dimension (LDVL,N) */ +/* If JOBVL = 'V', the left eigenvectors u(j) are stored one */ +/* after another in the columns of VL, in the same order */ +/* as their eigenvalues. */ +/* If JOBVL = 'N', VL is not referenced. */ +/* If the j-th eigenvalue is real, then u(j) = VL(:,j), */ +/* the j-th column of VL. */ +/* If the j-th and (j+1)-st eigenvalues form a complex */ +/* conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */ +/* u(j+1) = VL(:,j) - i*VL(:,j+1). */ + +/* LDVL (input) INTEGER */ +/* The leading dimension of the array VL. LDVL >= 1; if */ +/* JOBVL = 'V', LDVL >= N. */ + +/* VR (output) REAL array, dimension (LDVR,N) */ +/* If JOBVR = 'V', the right eigenvectors v(j) are stored one */ +/* after another in the columns of VR, in the same order */ +/* as their eigenvalues. */ +/* If JOBVR = 'N', VR is not referenced. */ +/* If the j-th eigenvalue is real, then v(j) = VR(:,j), */ +/* the j-th column of VR. */ +/* If the j-th and (j+1)-st eigenvalues form a complex */ +/* conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */ +/* v(j+1) = VR(:,j) - i*VR(:,j+1). */ + +/* LDVR (input) INTEGER */ +/* The leading dimension of the array VR. LDVR >= 1, and if */ +/* JOBVR = 'V', LDVR >= N. */ + +/* ILO (output) INTEGER */ +/* IHI (output) INTEGER */ +/* ILO and IHI are integer values determined when A was */ +/* balanced. The balanced A(i,j) = 0 if I > J and */ +/* J = 1,...,ILO-1 or I = IHI+1,...,N. */ + +/* SCALE (output) REAL array, dimension (N) */ +/* Details of the permutations and scaling factors applied */ +/* when balancing A. If P(j) is the index of the row and column */ +/* interchanged with row and column j, and D(j) is the scaling */ +/* factor applied to row and column j, then */ +/* SCALE(J) = P(J), for J = 1,...,ILO-1 */ +/* = D(J), for J = ILO,...,IHI */ +/* = P(J) for J = IHI+1,...,N. */ +/* The order in which the interchanges are made is N to IHI+1, */ +/* then 1 to ILO-1. */ + +/* ABNRM (output) REAL */ +/* The one-norm of the balanced matrix (the maximum */ +/* of the sum of absolute values of elements of any column). */ + +/* RCONDE (output) REAL array, dimension (N) */ +/* RCONDE(j) is the reciprocal condition number of the j-th */ +/* eigenvalue. */ + +/* RCONDV (output) REAL array, dimension (N) */ +/* RCONDV(j) is the reciprocal condition number of the j-th */ +/* right eigenvector. */ + +/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. If SENSE = 'N' or 'E', */ +/* LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', */ +/* LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). */ +/* For good performance, LWORK must generally be larger. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* IWORK (workspace) INTEGER array, dimension (2*N-2) */ +/* If SENSE = 'N' or 'E', not referenced. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: if INFO = i, the QR algorithm failed to compute all the */ +/* eigenvalues, and no eigenvectors or condition numbers */ +/* have been computed; elements 1:ILO-1 and i+1:N of WR */ +/* and WI contain eigenvalues which have converged. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --wr; + --wi; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --scale; + --rconde; + --rcondv; + --work; + --iwork; + + /* Function Body */ + *info = 0; + lquery = *lwork == -1; + wantvl = lsame_(jobvl, "V"); + wantvr = lsame_(jobvr, "V"); + wntsnn = lsame_(sense, "N"); + wntsne = lsame_(sense, "E"); + wntsnv = lsame_(sense, "V"); + wntsnb = lsame_(sense, "B"); + if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") + || lsame_(balanc, "B"))) { + *info = -1; + } else if (! wantvl && ! lsame_(jobvl, "N")) { + *info = -2; + } else if (! wantvr && ! lsame_(jobvr, "N")) { + *info = -3; + } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) + && ! (wantvl && wantvr)) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*lda < max(1,*n)) { + *info = -7; + } else if (*ldvl < 1 || wantvl && *ldvl < *n) { + *info = -11; + } else if (*ldvr < 1 || wantvr && *ldvr < *n) { + *info = -13; + } + +/* Compute workspace */ +/* (Note: Comments in the code beginning "Workspace:" describe the */ +/* minimal amount of workspace needed at that point in the code, */ +/* as well as the preferred amount for good performance. */ +/* NB refers to the optimal block size for the immediately */ +/* following subroutine, as returned by ILAENV. */ +/* HSWORK refers to the workspace preferred by SHSEQR, as */ +/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */ +/* the worst case.) */ + + if (*info == 0) { + if (*n == 0) { + minwrk = 1; + maxwrk = 1; + } else { + maxwrk = *n + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1, n, & + c__0); + + if (wantvl) { + shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[ + 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info); + } else if (wantvr) { + shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[ + 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info); + } else { + if (wntsnn) { + shseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], + &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, + info); + } else { + shseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], + &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, + info); + } + } + hswork = work[1]; + + if (! wantvl && ! wantvr) { + minwrk = *n << 1; + if (! wntsnn) { +/* Computing MAX */ + i__1 = minwrk, i__2 = *n * *n + *n * 6; + minwrk = max(i__1,i__2); + } + maxwrk = max(maxwrk,hswork); + if (! wntsnn) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n * *n + *n * 6; + maxwrk = max(i__1,i__2); + } + } else { + minwrk = *n * 3; + if (! wntsnn && ! wntsne) { +/* Computing MAX */ + i__1 = minwrk, i__2 = *n * *n + *n * 6; + minwrk = max(i__1,i__2); + } + maxwrk = max(maxwrk,hswork); +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "SORGHR", + " ", n, &c__1, n, &c_n1); + maxwrk = max(i__1,i__2); + if (! wntsnn && ! wntsne) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n * *n + *n * 6; + maxwrk = max(i__1,i__2); + } +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n * 3; + maxwrk = max(i__1,i__2); + } + maxwrk = max(maxwrk,minwrk); + } + work[1] = (real) maxwrk; + + if (*lwork < minwrk && ! lquery) { + *info = -21; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("SGEEVX", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Get machine constants */ + + eps = slamch_("P"); + smlnum = slamch_("S"); + bignum = 1.f / smlnum; + slabad_(&smlnum, &bignum); + smlnum = sqrt(smlnum) / eps; + bignum = 1.f / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + icond = 0; + anrm = slange_("M", n, n, &a[a_offset], lda, dum); + scalea = FALSE_; + if (anrm > 0.f && anrm < smlnum) { + scalea = TRUE_; + cscale = smlnum; + } else if (anrm > bignum) { + scalea = TRUE_; + cscale = bignum; + } + if (scalea) { + slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & + ierr); + } + +/* Balance the matrix and compute ABNRM */ + + sgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr); + *abnrm = slange_("1", n, n, &a[a_offset], lda, dum); + if (scalea) { + dum[0] = *abnrm; + slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, & + ierr); + *abnrm = dum[0]; + } + +/* Reduce to upper Hessenberg form */ +/* (Workspace: need 2*N, prefer N+N*NB) */ + + itau = 1; + iwrk = itau + *n; + i__1 = *lwork - iwrk + 1; + sgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, & + ierr); + + if (wantvl) { + +/* Want left eigenvectors */ +/* Copy Householder vectors to VL */ + + *(unsigned char *)side = 'L'; + slacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl) + ; + +/* Generate orthogonal matrix in VL */ +/* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */ + + i__1 = *lwork - iwrk + 1; + sorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], & + i__1, &ierr); + +/* Perform QR iteration, accumulating Schur vectors in VL */ +/* (Workspace: need 1, prefer HSWORK (see comments) ) */ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[ + vl_offset], ldvl, &work[iwrk], &i__1, info); + + if (wantvr) { + +/* Want left and right eigenvectors */ +/* Copy Schur vectors to VR */ + + *(unsigned char *)side = 'B'; + slacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr); + } + + } else if (wantvr) { + +/* Want right eigenvectors */ +/* Copy Householder vectors to VR */ + + *(unsigned char *)side = 'R'; + slacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr) + ; + +/* Generate orthogonal matrix in VR */ +/* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */ + + i__1 = *lwork - iwrk + 1; + sorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], & + i__1, &ierr); + +/* Perform QR iteration, accumulating Schur vectors in VR */ +/* (Workspace: need 1, prefer HSWORK (see comments) ) */ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[ + vr_offset], ldvr, &work[iwrk], &i__1, info); + + } else { + +/* Compute eigenvalues only */ +/* If condition numbers desired, compute Schur form */ + + if (wntsnn) { + *(unsigned char *)job = 'E'; + } else { + *(unsigned char *)job = 'S'; + } + +/* (Workspace: need 1, prefer HSWORK (see comments) ) */ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + shseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[ + vr_offset], ldvr, &work[iwrk], &i__1, info); + } + +/* If INFO > 0 from SHSEQR, then quit */ + + if (*info > 0) { + goto L50; + } + + if (wantvl || wantvr) { + +/* Compute left and/or right eigenvectors */ +/* (Workspace: need 3*N) */ + + strevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, + &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr); + } + +/* Compute condition numbers if desired */ +/* (Workspace: need N*N+6*N unless SENSE = 'E') */ + + if (! wntsnn) { + strsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], + ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, + &work[iwrk], n, &iwork[1], &icond); + } + + if (wantvl) { + +/* Undo balancing of left eigenvectors */ + + sgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, + &ierr); + +/* Normalize left eigenvectors and make largest component real */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + if (wi[i__] == 0.f) { + scl = 1.f / snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); + sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); + } else if (wi[i__] > 0.f) { + r__1 = snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); + r__2 = snrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1); + scl = 1.f / slapy2_(&r__1, &r__2); + sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); + sscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1); + i__2 = *n; + for (k = 1; k <= i__2; ++k) { +/* Computing 2nd power */ + r__1 = vl[k + i__ * vl_dim1]; +/* Computing 2nd power */ + r__2 = vl[k + (i__ + 1) * vl_dim1]; + work[k] = r__1 * r__1 + r__2 * r__2; +/* L10: */ + } + k = isamax_(n, &work[1], &c__1); + slartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], + &cs, &sn, &r__); + srot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * + vl_dim1 + 1], &c__1, &cs, &sn); + vl[k + (i__ + 1) * vl_dim1] = 0.f; + } +/* L20: */ + } + } + + if (wantvr) { + +/* Undo balancing of right eigenvectors */ + + sgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, + &ierr); + +/* Normalize right eigenvectors and make largest component real */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + if (wi[i__] == 0.f) { + scl = 1.f / snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); + sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); + } else if (wi[i__] > 0.f) { + r__1 = snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); + r__2 = snrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1); + scl = 1.f / slapy2_(&r__1, &r__2); + sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); + sscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1); + i__2 = *n; + for (k = 1; k <= i__2; ++k) { +/* Computing 2nd power */ + r__1 = vr[k + i__ * vr_dim1]; +/* Computing 2nd power */ + r__2 = vr[k + (i__ + 1) * vr_dim1]; + work[k] = r__1 * r__1 + r__2 * r__2; +/* L30: */ + } + k = isamax_(n, &work[1], &c__1); + slartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], + &cs, &sn, &r__); + srot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * + vr_dim1 + 1], &c__1, &cs, &sn); + vr[k + (i__ + 1) * vr_dim1] = 0.f; + } +/* L40: */ + } + } + +/* Undo scaling if necessary */ + +L50: + if (scalea) { + i__1 = *n - *info; +/* Computing MAX */ + i__3 = *n - *info; + i__2 = max(i__3,1); + slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + + 1], &i__2, &ierr); + i__1 = *n - *info; +/* Computing MAX */ + i__3 = *n - *info; + i__2 = max(i__3,1); + slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + + 1], &i__2, &ierr); + if (*info == 0) { + if ((wntsnv || wntsnb) && icond == 0) { + slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[ + 1], n, &ierr); + } + } else { + i__1 = *ilo - 1; + slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], + n, &ierr); + i__1 = *ilo - 1; + slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], + n, &ierr); + } + } + + work[1] = (real) maxwrk; + return 0; + +/* End of SGEEVX */ + +} /* sgeevx_ */ |