aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sgeevx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgeevx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgeevx.c')
-rw-r--r--contrib/libs/clapack/sgeevx.c696
1 files changed, 696 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgeevx.c b/contrib/libs/clapack/sgeevx.c
new file mode 100644
index 0000000000..2e94a12fec
--- /dev/null
+++ b/contrib/libs/clapack/sgeevx.c
@@ -0,0 +1,696 @@
+/* sgeevx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c__0 = 0;
+static integer c_n1 = -1;
+
+/* Subroutine */ int sgeevx_(char *balanc, char *jobvl, char *jobvr, char *
+ sense, integer *n, real *a, integer *lda, real *wr, real *wi, real *
+ vl, integer *ldvl, real *vr, integer *ldvr, integer *ilo, integer *
+ ihi, real *scale, real *abnrm, real *rconde, real *rcondv, real *work,
+ integer *lwork, integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
+ i__2, i__3;
+ real r__1, r__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, k;
+ real r__, cs, sn;
+ char job[1];
+ real scl, dum[1], eps;
+ char side[1];
+ real anrm;
+ integer ierr, itau, iwrk, nout;
+ extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
+ integer *, real *, real *);
+ extern doublereal snrm2_(integer *, real *, integer *);
+ integer icond;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ extern doublereal slapy2_(real *, real *);
+ extern /* Subroutine */ int slabad_(real *, real *);
+ logical scalea;
+ real cscale;
+ extern /* Subroutine */ int sgebak_(char *, char *, integer *, integer *,
+ integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *,
+ integer *, integer *, real *, integer *);
+ extern doublereal slamch_(char *), slange_(char *, integer *,
+ integer *, real *, integer *, real *);
+ extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real
+ *, integer *, real *, real *, integer *, integer *), xerbla_(char
+ *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ logical select[1];
+ real bignum;
+ extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
+ real *, integer *, integer *, real *, integer *, integer *);
+ extern integer isamax_(integer *, real *, integer *);
+ extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
+ integer *, real *, integer *), slartg_(real *, real *,
+ real *, real *, real *), sorghr_(integer *, integer *, integer *,
+ real *, integer *, real *, real *, integer *, integer *), shseqr_(
+ char *, char *, integer *, integer *, integer *, real *, integer *
+, real *, real *, real *, integer *, real *, integer *, integer *), strevc_(char *, char *, logical *, integer *,
+ real *, integer *, real *, integer *, real *, integer *, integer *
+, integer *, real *, integer *);
+ integer minwrk, maxwrk;
+ extern /* Subroutine */ int strsna_(char *, char *, logical *, integer *,
+ real *, integer *, real *, integer *, real *, integer *, real *,
+ real *, integer *, integer *, real *, integer *, integer *,
+ integer *);
+ logical wantvl, wntsnb;
+ integer hswork;
+ logical wntsne;
+ real smlnum;
+ logical lquery, wantvr, wntsnn, wntsnv;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SGEEVX computes for an N-by-N real nonsymmetric matrix A, the */
+/* eigenvalues and, optionally, the left and/or right eigenvectors. */
+
+/* Optionally also, it computes a balancing transformation to improve */
+/* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
+/* SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
+/* (RCONDE), and reciprocal condition numbers for the right */
+/* eigenvectors (RCONDV). */
+
+/* The right eigenvector v(j) of A satisfies */
+/* A * v(j) = lambda(j) * v(j) */
+/* where lambda(j) is its eigenvalue. */
+/* The left eigenvector u(j) of A satisfies */
+/* u(j)**H * A = lambda(j) * u(j)**H */
+/* where u(j)**H denotes the conjugate transpose of u(j). */
+
+/* The computed eigenvectors are normalized to have Euclidean norm */
+/* equal to 1 and largest component real. */
+
+/* Balancing a matrix means permuting the rows and columns to make it */
+/* more nearly upper triangular, and applying a diagonal similarity */
+/* transformation D * A * D**(-1), where D is a diagonal matrix, to */
+/* make its rows and columns closer in norm and the condition numbers */
+/* of its eigenvalues and eigenvectors smaller. The computed */
+/* reciprocal condition numbers correspond to the balanced matrix. */
+/* Permuting rows and columns will not change the condition numbers */
+/* (in exact arithmetic) but diagonal scaling will. For further */
+/* explanation of balancing, see section 4.10.2 of the LAPACK */
+/* Users' Guide. */
+
+/* Arguments */
+/* ========= */
+
+/* BALANC (input) CHARACTER*1 */
+/* Indicates how the input matrix should be diagonally scaled */
+/* and/or permuted to improve the conditioning of its */
+/* eigenvalues. */
+/* = 'N': Do not diagonally scale or permute; */
+/* = 'P': Perform permutations to make the matrix more nearly */
+/* upper triangular. Do not diagonally scale; */
+/* = 'S': Diagonally scale the matrix, i.e. replace A by */
+/* D*A*D**(-1), where D is a diagonal matrix chosen */
+/* to make the rows and columns of A more equal in */
+/* norm. Do not permute; */
+/* = 'B': Both diagonally scale and permute A. */
+
+/* Computed reciprocal condition numbers will be for the matrix */
+/* after balancing and/or permuting. Permuting does not change */
+/* condition numbers (in exact arithmetic), but balancing does. */
+
+/* JOBVL (input) CHARACTER*1 */
+/* = 'N': left eigenvectors of A are not computed; */
+/* = 'V': left eigenvectors of A are computed. */
+/* If SENSE = 'E' or 'B', JOBVL must = 'V'. */
+
+/* JOBVR (input) CHARACTER*1 */
+/* = 'N': right eigenvectors of A are not computed; */
+/* = 'V': right eigenvectors of A are computed. */
+/* If SENSE = 'E' or 'B', JOBVR must = 'V'. */
+
+/* SENSE (input) CHARACTER*1 */
+/* Determines which reciprocal condition numbers are computed. */
+/* = 'N': None are computed; */
+/* = 'E': Computed for eigenvalues only; */
+/* = 'V': Computed for right eigenvectors only; */
+/* = 'B': Computed for eigenvalues and right eigenvectors. */
+
+/* If SENSE = 'E' or 'B', both left and right eigenvectors */
+/* must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) REAL array, dimension (LDA,N) */
+/* On entry, the N-by-N matrix A. */
+/* On exit, A has been overwritten. If JOBVL = 'V' or */
+/* JOBVR = 'V', A contains the real Schur form of the balanced */
+/* version of the input matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* WR (output) REAL array, dimension (N) */
+/* WI (output) REAL array, dimension (N) */
+/* WR and WI contain the real and imaginary parts, */
+/* respectively, of the computed eigenvalues. Complex */
+/* conjugate pairs of eigenvalues will appear consecutively */
+/* with the eigenvalue having the positive imaginary part */
+/* first. */
+
+/* VL (output) REAL array, dimension (LDVL,N) */
+/* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
+/* after another in the columns of VL, in the same order */
+/* as their eigenvalues. */
+/* If JOBVL = 'N', VL is not referenced. */
+/* If the j-th eigenvalue is real, then u(j) = VL(:,j), */
+/* the j-th column of VL. */
+/* If the j-th and (j+1)-st eigenvalues form a complex */
+/* conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
+/* u(j+1) = VL(:,j) - i*VL(:,j+1). */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the array VL. LDVL >= 1; if */
+/* JOBVL = 'V', LDVL >= N. */
+
+/* VR (output) REAL array, dimension (LDVR,N) */
+/* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
+/* after another in the columns of VR, in the same order */
+/* as their eigenvalues. */
+/* If JOBVR = 'N', VR is not referenced. */
+/* If the j-th eigenvalue is real, then v(j) = VR(:,j), */
+/* the j-th column of VR. */
+/* If the j-th and (j+1)-st eigenvalues form a complex */
+/* conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
+/* v(j+1) = VR(:,j) - i*VR(:,j+1). */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. LDVR >= 1, and if */
+/* JOBVR = 'V', LDVR >= N. */
+
+/* ILO (output) INTEGER */
+/* IHI (output) INTEGER */
+/* ILO and IHI are integer values determined when A was */
+/* balanced. The balanced A(i,j) = 0 if I > J and */
+/* J = 1,...,ILO-1 or I = IHI+1,...,N. */
+
+/* SCALE (output) REAL array, dimension (N) */
+/* Details of the permutations and scaling factors applied */
+/* when balancing A. If P(j) is the index of the row and column */
+/* interchanged with row and column j, and D(j) is the scaling */
+/* factor applied to row and column j, then */
+/* SCALE(J) = P(J), for J = 1,...,ILO-1 */
+/* = D(J), for J = ILO,...,IHI */
+/* = P(J) for J = IHI+1,...,N. */
+/* The order in which the interchanges are made is N to IHI+1, */
+/* then 1 to ILO-1. */
+
+/* ABNRM (output) REAL */
+/* The one-norm of the balanced matrix (the maximum */
+/* of the sum of absolute values of elements of any column). */
+
+/* RCONDE (output) REAL array, dimension (N) */
+/* RCONDE(j) is the reciprocal condition number of the j-th */
+/* eigenvalue. */
+
+/* RCONDV (output) REAL array, dimension (N) */
+/* RCONDV(j) is the reciprocal condition number of the j-th */
+/* right eigenvector. */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. If SENSE = 'N' or 'E', */
+/* LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', */
+/* LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). */
+/* For good performance, LWORK must generally be larger. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* IWORK (workspace) INTEGER array, dimension (2*N-2) */
+/* If SENSE = 'N' or 'E', not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = i, the QR algorithm failed to compute all the */
+/* eigenvalues, and no eigenvectors or condition numbers */
+/* have been computed; elements 1:ILO-1 and i+1:N of WR */
+/* and WI contain eigenvalues which have converged. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --wr;
+ --wi;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --scale;
+ --rconde;
+ --rcondv;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ lquery = *lwork == -1;
+ wantvl = lsame_(jobvl, "V");
+ wantvr = lsame_(jobvr, "V");
+ wntsnn = lsame_(sense, "N");
+ wntsne = lsame_(sense, "E");
+ wntsnv = lsame_(sense, "V");
+ wntsnb = lsame_(sense, "B");
+ if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
+ || lsame_(balanc, "B"))) {
+ *info = -1;
+ } else if (! wantvl && ! lsame_(jobvl, "N")) {
+ *info = -2;
+ } else if (! wantvr && ! lsame_(jobvr, "N")) {
+ *info = -3;
+ } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
+ && ! (wantvl && wantvr)) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*lda < max(1,*n)) {
+ *info = -7;
+ } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
+ *info = -11;
+ } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
+ *info = -13;
+ }
+
+/* Compute workspace */
+/* (Note: Comments in the code beginning "Workspace:" describe the */
+/* minimal amount of workspace needed at that point in the code, */
+/* as well as the preferred amount for good performance. */
+/* NB refers to the optimal block size for the immediately */
+/* following subroutine, as returned by ILAENV. */
+/* HSWORK refers to the workspace preferred by SHSEQR, as */
+/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
+/* the worst case.) */
+
+ if (*info == 0) {
+ if (*n == 0) {
+ minwrk = 1;
+ maxwrk = 1;
+ } else {
+ maxwrk = *n + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1, n, &
+ c__0);
+
+ if (wantvl) {
+ shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
+ 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
+ } else if (wantvr) {
+ shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
+ 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
+ } else {
+ if (wntsnn) {
+ shseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
+ &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
+ info);
+ } else {
+ shseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
+ &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
+ info);
+ }
+ }
+ hswork = work[1];
+
+ if (! wantvl && ! wantvr) {
+ minwrk = *n << 1;
+ if (! wntsnn) {
+/* Computing MAX */
+ i__1 = minwrk, i__2 = *n * *n + *n * 6;
+ minwrk = max(i__1,i__2);
+ }
+ maxwrk = max(maxwrk,hswork);
+ if (! wntsnn) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * *n + *n * 6;
+ maxwrk = max(i__1,i__2);
+ }
+ } else {
+ minwrk = *n * 3;
+ if (! wntsnn && ! wntsne) {
+/* Computing MAX */
+ i__1 = minwrk, i__2 = *n * *n + *n * 6;
+ minwrk = max(i__1,i__2);
+ }
+ maxwrk = max(maxwrk,hswork);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "SORGHR",
+ " ", n, &c__1, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+ if (! wntsnn && ! wntsne) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * *n + *n * 6;
+ maxwrk = max(i__1,i__2);
+ }
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * 3;
+ maxwrk = max(i__1,i__2);
+ }
+ maxwrk = max(maxwrk,minwrk);
+ }
+ work[1] = (real) maxwrk;
+
+ if (*lwork < minwrk && ! lquery) {
+ *info = -21;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SGEEVX", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = slamch_("P");
+ smlnum = slamch_("S");
+ bignum = 1.f / smlnum;
+ slabad_(&smlnum, &bignum);
+ smlnum = sqrt(smlnum) / eps;
+ bignum = 1.f / smlnum;
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ icond = 0;
+ anrm = slange_("M", n, n, &a[a_offset], lda, dum);
+ scalea = FALSE_;
+ if (anrm > 0.f && anrm < smlnum) {
+ scalea = TRUE_;
+ cscale = smlnum;
+ } else if (anrm > bignum) {
+ scalea = TRUE_;
+ cscale = bignum;
+ }
+ if (scalea) {
+ slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
+ ierr);
+ }
+
+/* Balance the matrix and compute ABNRM */
+
+ sgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
+ *abnrm = slange_("1", n, n, &a[a_offset], lda, dum);
+ if (scalea) {
+ dum[0] = *abnrm;
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
+ ierr);
+ *abnrm = dum[0];
+ }
+
+/* Reduce to upper Hessenberg form */
+/* (Workspace: need 2*N, prefer N+N*NB) */
+
+ itau = 1;
+ iwrk = itau + *n;
+ i__1 = *lwork - iwrk + 1;
+ sgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
+ ierr);
+
+ if (wantvl) {
+
+/* Want left eigenvectors */
+/* Copy Householder vectors to VL */
+
+ *(unsigned char *)side = 'L';
+ slacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
+ ;
+
+/* Generate orthogonal matrix in VL */
+/* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
+
+ i__1 = *lwork - iwrk + 1;
+ sorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
+ i__1, &ierr);
+
+/* Perform QR iteration, accumulating Schur vectors in VL */
+/* (Workspace: need 1, prefer HSWORK (see comments) ) */
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
+ vl_offset], ldvl, &work[iwrk], &i__1, info);
+
+ if (wantvr) {
+
+/* Want left and right eigenvectors */
+/* Copy Schur vectors to VR */
+
+ *(unsigned char *)side = 'B';
+ slacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
+ }
+
+ } else if (wantvr) {
+
+/* Want right eigenvectors */
+/* Copy Householder vectors to VR */
+
+ *(unsigned char *)side = 'R';
+ slacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
+ ;
+
+/* Generate orthogonal matrix in VR */
+/* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
+
+ i__1 = *lwork - iwrk + 1;
+ sorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
+ i__1, &ierr);
+
+/* Perform QR iteration, accumulating Schur vectors in VR */
+/* (Workspace: need 1, prefer HSWORK (see comments) ) */
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
+ vr_offset], ldvr, &work[iwrk], &i__1, info);
+
+ } else {
+
+/* Compute eigenvalues only */
+/* If condition numbers desired, compute Schur form */
+
+ if (wntsnn) {
+ *(unsigned char *)job = 'E';
+ } else {
+ *(unsigned char *)job = 'S';
+ }
+
+/* (Workspace: need 1, prefer HSWORK (see comments) ) */
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ shseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
+ vr_offset], ldvr, &work[iwrk], &i__1, info);
+ }
+
+/* If INFO > 0 from SHSEQR, then quit */
+
+ if (*info > 0) {
+ goto L50;
+ }
+
+ if (wantvl || wantvr) {
+
+/* Compute left and/or right eigenvectors */
+/* (Workspace: need 3*N) */
+
+ strevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
+ &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
+ }
+
+/* Compute condition numbers if desired */
+/* (Workspace: need N*N+6*N unless SENSE = 'E') */
+
+ if (! wntsnn) {
+ strsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
+ ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
+ &work[iwrk], n, &iwork[1], &icond);
+ }
+
+ if (wantvl) {
+
+/* Undo balancing of left eigenvectors */
+
+ sgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
+ &ierr);
+
+/* Normalize left eigenvectors and make largest component real */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (wi[i__] == 0.f) {
+ scl = 1.f / snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
+ sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
+ } else if (wi[i__] > 0.f) {
+ r__1 = snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
+ r__2 = snrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
+ scl = 1.f / slapy2_(&r__1, &r__2);
+ sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
+ sscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+/* Computing 2nd power */
+ r__1 = vl[k + i__ * vl_dim1];
+/* Computing 2nd power */
+ r__2 = vl[k + (i__ + 1) * vl_dim1];
+ work[k] = r__1 * r__1 + r__2 * r__2;
+/* L10: */
+ }
+ k = isamax_(n, &work[1], &c__1);
+ slartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
+ &cs, &sn, &r__);
+ srot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
+ vl_dim1 + 1], &c__1, &cs, &sn);
+ vl[k + (i__ + 1) * vl_dim1] = 0.f;
+ }
+/* L20: */
+ }
+ }
+
+ if (wantvr) {
+
+/* Undo balancing of right eigenvectors */
+
+ sgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
+ &ierr);
+
+/* Normalize right eigenvectors and make largest component real */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (wi[i__] == 0.f) {
+ scl = 1.f / snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
+ sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
+ } else if (wi[i__] > 0.f) {
+ r__1 = snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
+ r__2 = snrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
+ scl = 1.f / slapy2_(&r__1, &r__2);
+ sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
+ sscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+/* Computing 2nd power */
+ r__1 = vr[k + i__ * vr_dim1];
+/* Computing 2nd power */
+ r__2 = vr[k + (i__ + 1) * vr_dim1];
+ work[k] = r__1 * r__1 + r__2 * r__2;
+/* L30: */
+ }
+ k = isamax_(n, &work[1], &c__1);
+ slartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
+ &cs, &sn, &r__);
+ srot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
+ vr_dim1 + 1], &c__1, &cs, &sn);
+ vr[k + (i__ + 1) * vr_dim1] = 0.f;
+ }
+/* L40: */
+ }
+ }
+
+/* Undo scaling if necessary */
+
+L50:
+ if (scalea) {
+ i__1 = *n - *info;
+/* Computing MAX */
+ i__3 = *n - *info;
+ i__2 = max(i__3,1);
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
+ 1], &i__2, &ierr);
+ i__1 = *n - *info;
+/* Computing MAX */
+ i__3 = *n - *info;
+ i__2 = max(i__3,1);
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
+ 1], &i__2, &ierr);
+ if (*info == 0) {
+ if ((wntsnv || wntsnb) && icond == 0) {
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
+ 1], n, &ierr);
+ }
+ } else {
+ i__1 = *ilo - 1;
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
+ n, &ierr);
+ i__1 = *ilo - 1;
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
+ n, &ierr);
+ }
+ }
+
+ work[1] = (real) maxwrk;
+ return 0;
+
+/* End of SGEEVX */
+
+} /* sgeevx_ */