aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sgeesx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgeesx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgeesx.c')
-rw-r--r--contrib/libs/clapack/sgeesx.c643
1 files changed, 643 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgeesx.c b/contrib/libs/clapack/sgeesx.c
new file mode 100644
index 0000000000..8f9cafa9bb
--- /dev/null
+++ b/contrib/libs/clapack/sgeesx.c
@@ -0,0 +1,643 @@
+/* sgeesx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c__0 = 0;
+static integer c_n1 = -1;
+
+/* Subroutine */ int sgeesx_(char *jobvs, char *sort, L_fp select, char *
+ sense, integer *n, real *a, integer *lda, integer *sdim, real *wr,
+ real *wi, real *vs, integer *ldvs, real *rconde, real *rcondv, real *
+ work, integer *lwork, integer *iwork, integer *liwork, logical *bwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, i1, i2, ip, ihi, ilo;
+ real dum[1], eps;
+ integer ibal;
+ real anrm;
+ integer ierr, itau, iwrk, lwrk, inxt, icond, ieval;
+ extern logical lsame_(char *, char *);
+ logical cursl;
+ integer liwrk;
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *), sswap_(integer *, real *, integer *, real *, integer *
+);
+ logical lst2sl;
+ extern /* Subroutine */ int slabad_(real *, real *);
+ logical scalea;
+ real cscale;
+ extern /* Subroutine */ int sgebak_(char *, char *, integer *, integer *,
+ integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *,
+ integer *, integer *, real *, integer *);
+ extern doublereal slamch_(char *), slange_(char *, integer *,
+ integer *, real *, integer *, real *);
+ extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real
+ *, integer *, real *, real *, integer *, integer *), xerbla_(char
+ *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ real bignum;
+ extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
+ real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *,
+ real *, integer *);
+ logical wantsb, wantse, lastsl;
+ extern /* Subroutine */ int sorghr_(integer *, integer *, integer *, real
+ *, integer *, real *, real *, integer *, integer *), shseqr_(char
+ *, char *, integer *, integer *, integer *, real *, integer *,
+ real *, real *, real *, integer *, real *, integer *, integer *);
+ integer minwrk, maxwrk;
+ logical wantsn;
+ real smlnum;
+ integer hswork;
+ extern /* Subroutine */ int strsen_(char *, char *, logical *, integer *,
+ real *, integer *, real *, integer *, real *, real *, integer *,
+ real *, real *, real *, integer *, integer *, integer *, integer *
+);
+ logical wantst, lquery, wantsv, wantvs;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+/* .. Function Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SGEESX computes for an N-by-N real nonsymmetric matrix A, the */
+/* eigenvalues, the real Schur form T, and, optionally, the matrix of */
+/* Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
+
+/* Optionally, it also orders the eigenvalues on the diagonal of the */
+/* real Schur form so that selected eigenvalues are at the top left; */
+/* computes a reciprocal condition number for the average of the */
+/* selected eigenvalues (RCONDE); and computes a reciprocal condition */
+/* number for the right invariant subspace corresponding to the */
+/* selected eigenvalues (RCONDV). The leading columns of Z form an */
+/* orthonormal basis for this invariant subspace. */
+
+/* For further explanation of the reciprocal condition numbers RCONDE */
+/* and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
+/* these quantities are called s and sep respectively). */
+
+/* A real matrix is in real Schur form if it is upper quasi-triangular */
+/* with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in */
+/* the form */
+/* [ a b ] */
+/* [ c a ] */
+
+/* where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
+
+/* Arguments */
+/* ========= */
+
+/* JOBVS (input) CHARACTER*1 */
+/* = 'N': Schur vectors are not computed; */
+/* = 'V': Schur vectors are computed. */
+
+/* SORT (input) CHARACTER*1 */
+/* Specifies whether or not to order the eigenvalues on the */
+/* diagonal of the Schur form. */
+/* = 'N': Eigenvalues are not ordered; */
+/* = 'S': Eigenvalues are ordered (see SELECT). */
+
+/* SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments */
+/* SELECT must be declared EXTERNAL in the calling subroutine. */
+/* If SORT = 'S', SELECT is used to select eigenvalues to sort */
+/* to the top left of the Schur form. */
+/* If SORT = 'N', SELECT is not referenced. */
+/* An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
+/* SELECT(WR(j),WI(j)) is true; i.e., if either one of a */
+/* complex conjugate pair of eigenvalues is selected, then both */
+/* are. Note that a selected complex eigenvalue may no longer */
+/* satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
+/* ordering may change the value of complex eigenvalues */
+/* (especially if the eigenvalue is ill-conditioned); in this */
+/* case INFO may be set to N+3 (see INFO below). */
+
+/* SENSE (input) CHARACTER*1 */
+/* Determines which reciprocal condition numbers are computed. */
+/* = 'N': None are computed; */
+/* = 'E': Computed for average of selected eigenvalues only; */
+/* = 'V': Computed for selected right invariant subspace only; */
+/* = 'B': Computed for both. */
+/* If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) REAL array, dimension (LDA, N) */
+/* On entry, the N-by-N matrix A. */
+/* On exit, A is overwritten by its real Schur form T. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* SDIM (output) INTEGER */
+/* If SORT = 'N', SDIM = 0. */
+/* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
+/* for which SELECT is true. (Complex conjugate */
+/* pairs for which SELECT is true for either */
+/* eigenvalue count as 2.) */
+
+/* WR (output) REAL array, dimension (N) */
+/* WI (output) REAL array, dimension (N) */
+/* WR and WI contain the real and imaginary parts, respectively, */
+/* of the computed eigenvalues, in the same order that they */
+/* appear on the diagonal of the output Schur form T. Complex */
+/* conjugate pairs of eigenvalues appear consecutively with the */
+/* eigenvalue having the positive imaginary part first. */
+
+/* VS (output) REAL array, dimension (LDVS,N) */
+/* If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
+/* vectors. */
+/* If JOBVS = 'N', VS is not referenced. */
+
+/* LDVS (input) INTEGER */
+/* The leading dimension of the array VS. LDVS >= 1, and if */
+/* JOBVS = 'V', LDVS >= N. */
+
+/* RCONDE (output) REAL */
+/* If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
+/* condition number for the average of the selected eigenvalues. */
+/* Not referenced if SENSE = 'N' or 'V'. */
+
+/* RCONDV (output) REAL */
+/* If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
+/* condition number for the selected right invariant subspace. */
+/* Not referenced if SENSE = 'N' or 'E'. */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,3*N). */
+/* Also, if SENSE = 'E' or 'V' or 'B', */
+/* LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of */
+/* selected eigenvalues computed by this routine. Note that */
+/* N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only */
+/* returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or */
+/* 'B' this may not be large enough. */
+/* For good performance, LWORK must generally be larger. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates upper bounds on the optimal sizes of the */
+/* arrays WORK and IWORK, returns these values as the first */
+/* entries of the WORK and IWORK arrays, and no error messages */
+/* related to LWORK or LIWORK are issued by XERBLA. */
+
+/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of the array IWORK. */
+/* LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM). */
+/* Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is */
+/* only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this */
+/* may not be large enough. */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates upper bounds on the optimal sizes of */
+/* the arrays WORK and IWORK, returns these values as the first */
+/* entries of the WORK and IWORK arrays, and no error messages */
+/* related to LWORK or LIWORK are issued by XERBLA. */
+
+/* BWORK (workspace) LOGICAL array, dimension (N) */
+/* Not referenced if SORT = 'N'. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = i, and i is */
+/* <= N: the QR algorithm failed to compute all the */
+/* eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
+/* contain those eigenvalues which have converged; if */
+/* JOBVS = 'V', VS contains the transformation which */
+/* reduces A to its partially converged Schur form. */
+/* = N+1: the eigenvalues could not be reordered because some */
+/* eigenvalues were too close to separate (the problem */
+/* is very ill-conditioned); */
+/* = N+2: after reordering, roundoff changed values of some */
+/* complex eigenvalues so that leading eigenvalues in */
+/* the Schur form no longer satisfy SELECT=.TRUE. This */
+/* could also be caused by underflow due to scaling. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --wr;
+ --wi;
+ vs_dim1 = *ldvs;
+ vs_offset = 1 + vs_dim1;
+ vs -= vs_offset;
+ --work;
+ --iwork;
+ --bwork;
+
+ /* Function Body */
+ *info = 0;
+ wantvs = lsame_(jobvs, "V");
+ wantst = lsame_(sort, "S");
+ wantsn = lsame_(sense, "N");
+ wantse = lsame_(sense, "E");
+ wantsv = lsame_(sense, "V");
+ wantsb = lsame_(sense, "B");
+ lquery = *lwork == -1 || *liwork == -1;
+ if (! wantvs && ! lsame_(jobvs, "N")) {
+ *info = -1;
+ } else if (! wantst && ! lsame_(sort, "N")) {
+ *info = -2;
+ } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
+ wantsn) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*lda < max(1,*n)) {
+ *info = -7;
+ } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
+ *info = -12;
+ }
+
+/* Compute workspace */
+/* (Note: Comments in the code beginning "RWorkspace:" describe the */
+/* minimal amount of real workspace needed at that point in the */
+/* code, as well as the preferred amount for good performance. */
+/* IWorkspace refers to integer workspace. */
+/* NB refers to the optimal block size for the immediately */
+/* following subroutine, as returned by ILAENV. */
+/* HSWORK refers to the workspace preferred by SHSEQR, as */
+/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
+/* the worst case. */
+/* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
+/* depends on SDIM, which is computed by the routine STRSEN later */
+/* in the code.) */
+
+ if (*info == 0) {
+ liwrk = 1;
+ if (*n == 0) {
+ minwrk = 1;
+ lwrk = 1;
+ } else {
+ maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1,
+ n, &c__0);
+ minwrk = *n * 3;
+
+ shseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
+, &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
+ hswork = work[1];
+
+ if (! wantvs) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + hswork;
+ maxwrk = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
+ "SORGHR", " ", n, &c__1, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + hswork;
+ maxwrk = max(i__1,i__2);
+ }
+ lwrk = maxwrk;
+ if (! wantsn) {
+/* Computing MAX */
+ i__1 = lwrk, i__2 = *n + *n * *n / 2;
+ lwrk = max(i__1,i__2);
+ }
+ if (wantsv || wantsb) {
+ liwrk = *n * *n / 4;
+ }
+ }
+ iwork[1] = liwrk;
+ work[1] = (real) lwrk;
+
+ if (*lwork < minwrk && ! lquery) {
+ *info = -16;
+ } else if (*liwork < 1 && ! lquery) {
+ *info = -18;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SGEESX", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ *sdim = 0;
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = slamch_("P");
+ smlnum = slamch_("S");
+ bignum = 1.f / smlnum;
+ slabad_(&smlnum, &bignum);
+ smlnum = sqrt(smlnum) / eps;
+ bignum = 1.f / smlnum;
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ anrm = slange_("M", n, n, &a[a_offset], lda, dum);
+ scalea = FALSE_;
+ if (anrm > 0.f && anrm < smlnum) {
+ scalea = TRUE_;
+ cscale = smlnum;
+ } else if (anrm > bignum) {
+ scalea = TRUE_;
+ cscale = bignum;
+ }
+ if (scalea) {
+ slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
+ ierr);
+ }
+
+/* Permute the matrix to make it more nearly triangular */
+/* (RWorkspace: need N) */
+
+ ibal = 1;
+ sgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
+
+/* Reduce to upper Hessenberg form */
+/* (RWorkspace: need 3*N, prefer 2*N+N*NB) */
+
+ itau = *n + ibal;
+ iwrk = *n + itau;
+ i__1 = *lwork - iwrk + 1;
+ sgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
+ &ierr);
+
+ if (wantvs) {
+
+/* Copy Householder vectors to VS */
+
+ slacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
+ ;
+
+/* Generate orthogonal matrix in VS */
+/* (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
+
+ i__1 = *lwork - iwrk + 1;
+ sorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
+ &i__1, &ierr);
+ }
+
+ *sdim = 0;
+
+/* Perform QR iteration, accumulating Schur vectors in VS if desired */
+/* (RWorkspace: need N+1, prefer N+HSWORK (see comments) ) */
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ shseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
+ vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
+ if (ieval > 0) {
+ *info = ieval;
+ }
+
+/* Sort eigenvalues if desired */
+
+ if (wantst && *info == 0) {
+ if (scalea) {
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
+ ierr);
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
+ ierr);
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ bwork[i__] = (*select)(&wr[i__], &wi[i__]);
+/* L10: */
+ }
+
+/* Reorder eigenvalues, transform Schur vectors, and compute */
+/* reciprocal condition numbers */
+/* (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM) */
+/* otherwise, need N ) */
+/* (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM) */
+/* otherwise, need 0 ) */
+
+ i__1 = *lwork - iwrk + 1;
+ strsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
+ ldvs, &wr[1], &wi[1], sdim, rconde, rcondv, &work[iwrk], &
+ i__1, &iwork[1], liwork, &icond);
+ if (! wantsn) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + (*sdim << 1) * (*n - *sdim);
+ maxwrk = max(i__1,i__2);
+ }
+ if (icond == -15) {
+
+/* Not enough real workspace */
+
+ *info = -16;
+ } else if (icond == -17) {
+
+/* Not enough integer workspace */
+
+ *info = -18;
+ } else if (icond > 0) {
+
+/* STRSEN failed to reorder or to restore standard Schur form */
+
+ *info = icond + *n;
+ }
+ }
+
+ if (wantvs) {
+
+/* Undo balancing */
+/* (RWorkspace: need N) */
+
+ sgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs,
+ &ierr);
+ }
+
+ if (scalea) {
+
+/* Undo scaling for the Schur form of A */
+
+ slascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
+ ierr);
+ i__1 = *lda + 1;
+ scopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
+ if ((wantsv || wantsb) && *info == 0) {
+ dum[0] = *rcondv;
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
+ c__1, &ierr);
+ *rcondv = dum[0];
+ }
+ if (cscale == smlnum) {
+
+/* If scaling back towards underflow, adjust WI if an */
+/* offdiagonal element of a 2-by-2 block in the Schur form */
+/* underflows. */
+
+ if (ieval > 0) {
+ i1 = ieval + 1;
+ i2 = ihi - 1;
+ i__1 = ilo - 1;
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
+ 1], n, &ierr);
+ } else if (wantst) {
+ i1 = 1;
+ i2 = *n - 1;
+ } else {
+ i1 = ilo;
+ i2 = ihi - 1;
+ }
+ inxt = i1 - 1;
+ i__1 = i2;
+ for (i__ = i1; i__ <= i__1; ++i__) {
+ if (i__ < inxt) {
+ goto L20;
+ }
+ if (wi[i__] == 0.f) {
+ inxt = i__ + 1;
+ } else {
+ if (a[i__ + 1 + i__ * a_dim1] == 0.f) {
+ wi[i__] = 0.f;
+ wi[i__ + 1] = 0.f;
+ } else if (a[i__ + 1 + i__ * a_dim1] != 0.f && a[i__ + (
+ i__ + 1) * a_dim1] == 0.f) {
+ wi[i__] = 0.f;
+ wi[i__ + 1] = 0.f;
+ if (i__ > 1) {
+ i__2 = i__ - 1;
+ sswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
+ i__ + 1) * a_dim1 + 1], &c__1);
+ }
+ if (*n > i__ + 1) {
+ i__2 = *n - i__ - 1;
+ sswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
+ a[i__ + 1 + (i__ + 2) * a_dim1], lda);
+ }
+ sswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__ + 1)
+ * vs_dim1 + 1], &c__1);
+ a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ *
+ a_dim1];
+ a[i__ + 1 + i__ * a_dim1] = 0.f;
+ }
+ inxt = i__ + 2;
+ }
+L20:
+ ;
+ }
+ }
+ i__1 = *n - ieval;
+/* Computing MAX */
+ i__3 = *n - ieval;
+ i__2 = max(i__3,1);
+ slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval +
+ 1], &i__2, &ierr);
+ }
+
+ if (wantst && *info == 0) {
+
+/* Check if reordering successful */
+
+ lastsl = TRUE_;
+ lst2sl = TRUE_;
+ *sdim = 0;
+ ip = 0;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ cursl = (*select)(&wr[i__], &wi[i__]);
+ if (wi[i__] == 0.f) {
+ if (cursl) {
+ ++(*sdim);
+ }
+ ip = 0;
+ if (cursl && ! lastsl) {
+ *info = *n + 2;
+ }
+ } else {
+ if (ip == 1) {
+
+/* Last eigenvalue of conjugate pair */
+
+ cursl = cursl || lastsl;
+ lastsl = cursl;
+ if (cursl) {
+ *sdim += 2;
+ }
+ ip = -1;
+ if (cursl && ! lst2sl) {
+ *info = *n + 2;
+ }
+ } else {
+
+/* First eigenvalue of conjugate pair */
+
+ ip = 1;
+ }
+ }
+ lst2sl = lastsl;
+ lastsl = cursl;
+/* L30: */
+ }
+ }
+
+ work[1] = (real) maxwrk;
+ if (wantsv || wantsb) {
+ iwork[1] = *sdim * (*n - *sdim);
+ } else {
+ iwork[1] = 1;
+ }
+
+ return 0;
+
+/* End of SGEESX */
+
+} /* sgeesx_ */