diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgeesx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgeesx.c')
-rw-r--r-- | contrib/libs/clapack/sgeesx.c | 643 |
1 files changed, 643 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgeesx.c b/contrib/libs/clapack/sgeesx.c new file mode 100644 index 0000000000..8f9cafa9bb --- /dev/null +++ b/contrib/libs/clapack/sgeesx.c @@ -0,0 +1,643 @@ +/* sgeesx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c__0 = 0; +static integer c_n1 = -1; + +/* Subroutine */ int sgeesx_(char *jobvs, char *sort, L_fp select, char * + sense, integer *n, real *a, integer *lda, integer *sdim, real *wr, + real *wi, real *vs, integer *ldvs, real *rconde, real *rcondv, real * + work, integer *lwork, integer *iwork, integer *liwork, logical *bwork, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, i1, i2, ip, ihi, ilo; + real dum[1], eps; + integer ibal; + real anrm; + integer ierr, itau, iwrk, lwrk, inxt, icond, ieval; + extern logical lsame_(char *, char *); + logical cursl; + integer liwrk; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *), sswap_(integer *, real *, integer *, real *, integer * +); + logical lst2sl; + extern /* Subroutine */ int slabad_(real *, real *); + logical scalea; + real cscale; + extern /* Subroutine */ int sgebak_(char *, char *, integer *, integer *, + integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *, + integer *, integer *, real *, integer *); + extern doublereal slamch_(char *), slange_(char *, integer *, + integer *, real *, integer *, real *); + extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real + *, integer *, real *, real *, integer *, integer *), xerbla_(char + *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + real bignum; + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, + real *, integer *); + logical wantsb, wantse, lastsl; + extern /* Subroutine */ int sorghr_(integer *, integer *, integer *, real + *, integer *, real *, real *, integer *, integer *), shseqr_(char + *, char *, integer *, integer *, integer *, real *, integer *, + real *, real *, real *, integer *, real *, integer *, integer *); + integer minwrk, maxwrk; + logical wantsn; + real smlnum; + integer hswork; + extern /* Subroutine */ int strsen_(char *, char *, logical *, integer *, + real *, integer *, real *, integer *, real *, real *, integer *, + real *, real *, real *, integer *, integer *, integer *, integer * +); + logical wantst, lquery, wantsv, wantvs; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ +/* .. Function Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SGEESX computes for an N-by-N real nonsymmetric matrix A, the */ +/* eigenvalues, the real Schur form T, and, optionally, the matrix of */ +/* Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */ + +/* Optionally, it also orders the eigenvalues on the diagonal of the */ +/* real Schur form so that selected eigenvalues are at the top left; */ +/* computes a reciprocal condition number for the average of the */ +/* selected eigenvalues (RCONDE); and computes a reciprocal condition */ +/* number for the right invariant subspace corresponding to the */ +/* selected eigenvalues (RCONDV). The leading columns of Z form an */ +/* orthonormal basis for this invariant subspace. */ + +/* For further explanation of the reciprocal condition numbers RCONDE */ +/* and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */ +/* these quantities are called s and sep respectively). */ + +/* A real matrix is in real Schur form if it is upper quasi-triangular */ +/* with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in */ +/* the form */ +/* [ a b ] */ +/* [ c a ] */ + +/* where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */ + +/* Arguments */ +/* ========= */ + +/* JOBVS (input) CHARACTER*1 */ +/* = 'N': Schur vectors are not computed; */ +/* = 'V': Schur vectors are computed. */ + +/* SORT (input) CHARACTER*1 */ +/* Specifies whether or not to order the eigenvalues on the */ +/* diagonal of the Schur form. */ +/* = 'N': Eigenvalues are not ordered; */ +/* = 'S': Eigenvalues are ordered (see SELECT). */ + +/* SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments */ +/* SELECT must be declared EXTERNAL in the calling subroutine. */ +/* If SORT = 'S', SELECT is used to select eigenvalues to sort */ +/* to the top left of the Schur form. */ +/* If SORT = 'N', SELECT is not referenced. */ +/* An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */ +/* SELECT(WR(j),WI(j)) is true; i.e., if either one of a */ +/* complex conjugate pair of eigenvalues is selected, then both */ +/* are. Note that a selected complex eigenvalue may no longer */ +/* satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */ +/* ordering may change the value of complex eigenvalues */ +/* (especially if the eigenvalue is ill-conditioned); in this */ +/* case INFO may be set to N+3 (see INFO below). */ + +/* SENSE (input) CHARACTER*1 */ +/* Determines which reciprocal condition numbers are computed. */ +/* = 'N': None are computed; */ +/* = 'E': Computed for average of selected eigenvalues only; */ +/* = 'V': Computed for selected right invariant subspace only; */ +/* = 'B': Computed for both. */ +/* If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) REAL array, dimension (LDA, N) */ +/* On entry, the N-by-N matrix A. */ +/* On exit, A is overwritten by its real Schur form T. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* SDIM (output) INTEGER */ +/* If SORT = 'N', SDIM = 0. */ +/* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */ +/* for which SELECT is true. (Complex conjugate */ +/* pairs for which SELECT is true for either */ +/* eigenvalue count as 2.) */ + +/* WR (output) REAL array, dimension (N) */ +/* WI (output) REAL array, dimension (N) */ +/* WR and WI contain the real and imaginary parts, respectively, */ +/* of the computed eigenvalues, in the same order that they */ +/* appear on the diagonal of the output Schur form T. Complex */ +/* conjugate pairs of eigenvalues appear consecutively with the */ +/* eigenvalue having the positive imaginary part first. */ + +/* VS (output) REAL array, dimension (LDVS,N) */ +/* If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */ +/* vectors. */ +/* If JOBVS = 'N', VS is not referenced. */ + +/* LDVS (input) INTEGER */ +/* The leading dimension of the array VS. LDVS >= 1, and if */ +/* JOBVS = 'V', LDVS >= N. */ + +/* RCONDE (output) REAL */ +/* If SENSE = 'E' or 'B', RCONDE contains the reciprocal */ +/* condition number for the average of the selected eigenvalues. */ +/* Not referenced if SENSE = 'N' or 'V'. */ + +/* RCONDV (output) REAL */ +/* If SENSE = 'V' or 'B', RCONDV contains the reciprocal */ +/* condition number for the selected right invariant subspace. */ +/* Not referenced if SENSE = 'N' or 'E'. */ + +/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,3*N). */ +/* Also, if SENSE = 'E' or 'V' or 'B', */ +/* LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of */ +/* selected eigenvalues computed by this routine. Note that */ +/* N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only */ +/* returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or */ +/* 'B' this may not be large enough. */ +/* For good performance, LWORK must generally be larger. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates upper bounds on the optimal sizes of the */ +/* arrays WORK and IWORK, returns these values as the first */ +/* entries of the WORK and IWORK arrays, and no error messages */ +/* related to LWORK or LIWORK are issued by XERBLA. */ + +/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ +/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ + +/* LIWORK (input) INTEGER */ +/* The dimension of the array IWORK. */ +/* LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM). */ +/* Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is */ +/* only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this */ +/* may not be large enough. */ + +/* If LIWORK = -1, then a workspace query is assumed; the */ +/* routine only calculates upper bounds on the optimal sizes of */ +/* the arrays WORK and IWORK, returns these values as the first */ +/* entries of the WORK and IWORK arrays, and no error messages */ +/* related to LWORK or LIWORK are issued by XERBLA. */ + +/* BWORK (workspace) LOGICAL array, dimension (N) */ +/* Not referenced if SORT = 'N'. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: if INFO = i, and i is */ +/* <= N: the QR algorithm failed to compute all the */ +/* eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */ +/* contain those eigenvalues which have converged; if */ +/* JOBVS = 'V', VS contains the transformation which */ +/* reduces A to its partially converged Schur form. */ +/* = N+1: the eigenvalues could not be reordered because some */ +/* eigenvalues were too close to separate (the problem */ +/* is very ill-conditioned); */ +/* = N+2: after reordering, roundoff changed values of some */ +/* complex eigenvalues so that leading eigenvalues in */ +/* the Schur form no longer satisfy SELECT=.TRUE. This */ +/* could also be caused by underflow due to scaling. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --wr; + --wi; + vs_dim1 = *ldvs; + vs_offset = 1 + vs_dim1; + vs -= vs_offset; + --work; + --iwork; + --bwork; + + /* Function Body */ + *info = 0; + wantvs = lsame_(jobvs, "V"); + wantst = lsame_(sort, "S"); + wantsn = lsame_(sense, "N"); + wantse = lsame_(sense, "E"); + wantsv = lsame_(sense, "V"); + wantsb = lsame_(sense, "B"); + lquery = *lwork == -1 || *liwork == -1; + if (! wantvs && ! lsame_(jobvs, "N")) { + *info = -1; + } else if (! wantst && ! lsame_(sort, "N")) { + *info = -2; + } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! + wantsn) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*lda < max(1,*n)) { + *info = -7; + } else if (*ldvs < 1 || wantvs && *ldvs < *n) { + *info = -12; + } + +/* Compute workspace */ +/* (Note: Comments in the code beginning "RWorkspace:" describe the */ +/* minimal amount of real workspace needed at that point in the */ +/* code, as well as the preferred amount for good performance. */ +/* IWorkspace refers to integer workspace. */ +/* NB refers to the optimal block size for the immediately */ +/* following subroutine, as returned by ILAENV. */ +/* HSWORK refers to the workspace preferred by SHSEQR, as */ +/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */ +/* the worst case. */ +/* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */ +/* depends on SDIM, which is computed by the routine STRSEN later */ +/* in the code.) */ + + if (*info == 0) { + liwrk = 1; + if (*n == 0) { + minwrk = 1; + lwrk = 1; + } else { + maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1, + n, &c__0); + minwrk = *n * 3; + + shseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1] +, &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval); + hswork = work[1]; + + if (! wantvs) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n + hswork; + maxwrk = max(i__1,i__2); + } else { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, + "SORGHR", " ", n, &c__1, n, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n + hswork; + maxwrk = max(i__1,i__2); + } + lwrk = maxwrk; + if (! wantsn) { +/* Computing MAX */ + i__1 = lwrk, i__2 = *n + *n * *n / 2; + lwrk = max(i__1,i__2); + } + if (wantsv || wantsb) { + liwrk = *n * *n / 4; + } + } + iwork[1] = liwrk; + work[1] = (real) lwrk; + + if (*lwork < minwrk && ! lquery) { + *info = -16; + } else if (*liwork < 1 && ! lquery) { + *info = -18; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("SGEESX", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + *sdim = 0; + return 0; + } + +/* Get machine constants */ + + eps = slamch_("P"); + smlnum = slamch_("S"); + bignum = 1.f / smlnum; + slabad_(&smlnum, &bignum); + smlnum = sqrt(smlnum) / eps; + bignum = 1.f / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + anrm = slange_("M", n, n, &a[a_offset], lda, dum); + scalea = FALSE_; + if (anrm > 0.f && anrm < smlnum) { + scalea = TRUE_; + cscale = smlnum; + } else if (anrm > bignum) { + scalea = TRUE_; + cscale = bignum; + } + if (scalea) { + slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & + ierr); + } + +/* Permute the matrix to make it more nearly triangular */ +/* (RWorkspace: need N) */ + + ibal = 1; + sgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr); + +/* Reduce to upper Hessenberg form */ +/* (RWorkspace: need 3*N, prefer 2*N+N*NB) */ + + itau = *n + ibal; + iwrk = *n + itau; + i__1 = *lwork - iwrk + 1; + sgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, + &ierr); + + if (wantvs) { + +/* Copy Householder vectors to VS */ + + slacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs) + ; + +/* Generate orthogonal matrix in VS */ +/* (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ + + i__1 = *lwork - iwrk + 1; + sorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk], + &i__1, &ierr); + } + + *sdim = 0; + +/* Perform QR iteration, accumulating Schur vectors in VS if desired */ +/* (RWorkspace: need N+1, prefer N+HSWORK (see comments) ) */ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + shseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[ + vs_offset], ldvs, &work[iwrk], &i__1, &ieval); + if (ieval > 0) { + *info = ieval; + } + +/* Sort eigenvalues if desired */ + + if (wantst && *info == 0) { + if (scalea) { + slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, & + ierr); + slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, & + ierr); + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + bwork[i__] = (*select)(&wr[i__], &wi[i__]); +/* L10: */ + } + +/* Reorder eigenvalues, transform Schur vectors, and compute */ +/* reciprocal condition numbers */ +/* (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM) */ +/* otherwise, need N ) */ +/* (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM) */ +/* otherwise, need 0 ) */ + + i__1 = *lwork - iwrk + 1; + strsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], + ldvs, &wr[1], &wi[1], sdim, rconde, rcondv, &work[iwrk], & + i__1, &iwork[1], liwork, &icond); + if (! wantsn) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n + (*sdim << 1) * (*n - *sdim); + maxwrk = max(i__1,i__2); + } + if (icond == -15) { + +/* Not enough real workspace */ + + *info = -16; + } else if (icond == -17) { + +/* Not enough integer workspace */ + + *info = -18; + } else if (icond > 0) { + +/* STRSEN failed to reorder or to restore standard Schur form */ + + *info = icond + *n; + } + } + + if (wantvs) { + +/* Undo balancing */ +/* (RWorkspace: need N) */ + + sgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs, + &ierr); + } + + if (scalea) { + +/* Undo scaling for the Schur form of A */ + + slascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, & + ierr); + i__1 = *lda + 1; + scopy_(n, &a[a_offset], &i__1, &wr[1], &c__1); + if ((wantsv || wantsb) && *info == 0) { + dum[0] = *rcondv; + slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, & + c__1, &ierr); + *rcondv = dum[0]; + } + if (cscale == smlnum) { + +/* If scaling back towards underflow, adjust WI if an */ +/* offdiagonal element of a 2-by-2 block in the Schur form */ +/* underflows. */ + + if (ieval > 0) { + i1 = ieval + 1; + i2 = ihi - 1; + i__1 = ilo - 1; + slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ + 1], n, &ierr); + } else if (wantst) { + i1 = 1; + i2 = *n - 1; + } else { + i1 = ilo; + i2 = ihi - 1; + } + inxt = i1 - 1; + i__1 = i2; + for (i__ = i1; i__ <= i__1; ++i__) { + if (i__ < inxt) { + goto L20; + } + if (wi[i__] == 0.f) { + inxt = i__ + 1; + } else { + if (a[i__ + 1 + i__ * a_dim1] == 0.f) { + wi[i__] = 0.f; + wi[i__ + 1] = 0.f; + } else if (a[i__ + 1 + i__ * a_dim1] != 0.f && a[i__ + ( + i__ + 1) * a_dim1] == 0.f) { + wi[i__] = 0.f; + wi[i__ + 1] = 0.f; + if (i__ > 1) { + i__2 = i__ - 1; + sswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[( + i__ + 1) * a_dim1 + 1], &c__1); + } + if (*n > i__ + 1) { + i__2 = *n - i__ - 1; + sswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, & + a[i__ + 1 + (i__ + 2) * a_dim1], lda); + } + sswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__ + 1) + * vs_dim1 + 1], &c__1); + a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ * + a_dim1]; + a[i__ + 1 + i__ * a_dim1] = 0.f; + } + inxt = i__ + 2; + } +L20: + ; + } + } + i__1 = *n - ieval; +/* Computing MAX */ + i__3 = *n - ieval; + i__2 = max(i__3,1); + slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval + + 1], &i__2, &ierr); + } + + if (wantst && *info == 0) { + +/* Check if reordering successful */ + + lastsl = TRUE_; + lst2sl = TRUE_; + *sdim = 0; + ip = 0; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + cursl = (*select)(&wr[i__], &wi[i__]); + if (wi[i__] == 0.f) { + if (cursl) { + ++(*sdim); + } + ip = 0; + if (cursl && ! lastsl) { + *info = *n + 2; + } + } else { + if (ip == 1) { + +/* Last eigenvalue of conjugate pair */ + + cursl = cursl || lastsl; + lastsl = cursl; + if (cursl) { + *sdim += 2; + } + ip = -1; + if (cursl && ! lst2sl) { + *info = *n + 2; + } + } else { + +/* First eigenvalue of conjugate pair */ + + ip = 1; + } + } + lst2sl = lastsl; + lastsl = cursl; +/* L30: */ + } + } + + work[1] = (real) maxwrk; + if (wantsv || wantsb) { + iwork[1] = *sdim * (*n - *sdim); + } else { + iwork[1] = 1; + } + + return 0; + +/* End of SGEESX */ + +} /* sgeesx_ */ |