diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dtrttf.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dtrttf.c')
-rw-r--r-- | contrib/libs/clapack/dtrttf.c | 489 |
1 files changed, 489 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dtrttf.c b/contrib/libs/clapack/dtrttf.c new file mode 100644 index 0000000000..0e1746e716 --- /dev/null +++ b/contrib/libs/clapack/dtrttf.c @@ -0,0 +1,489 @@ +/* dtrttf.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int dtrttf_(char *transr, char *uplo, integer *n, doublereal + *a, integer *lda, doublereal *arf, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + integer i__, j, k, l, n1, n2, ij, nt, nx2, np1x2; + logical normaltransr; + extern logical lsame_(char *, char *); + logical lower; + extern /* Subroutine */ int xerbla_(char *, integer *); + logical nisodd; + + +/* -- LAPACK routine (version 3.2) -- */ + +/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */ +/* -- November 2008 -- */ + +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DTRTTF copies a triangular matrix A from standard full format (TR) */ +/* to rectangular full packed format (TF) . */ + +/* Arguments */ +/* ========= */ + +/* TRANSR (input) CHARACTER */ +/* = 'N': ARF in Normal form is wanted; */ +/* = 'T': ARF in Transpose form is wanted. */ + +/* UPLO (input) CHARACTER */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input) DOUBLE PRECISION array, dimension (LDA,N). */ +/* On entry, the triangular matrix A. If UPLO = 'U', the */ +/* leading N-by-N upper triangular part of the array A contains */ +/* the upper triangular matrix, and the strictly lower */ +/* triangular part of A is not referenced. If UPLO = 'L', the */ +/* leading N-by-N lower triangular part of the array A contains */ +/* the lower triangular matrix, and the strictly upper */ +/* triangular part of A is not referenced. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the matrix A. LDA >= max(1,N). */ + +/* ARF (output) DOUBLE PRECISION array, dimension (NT). */ +/* NT=N*(N+1)/2. On exit, the triangular matrix A in RFP format. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Notes */ +/* ===== */ + +/* We first consider Rectangular Full Packed (RFP) Format when N is */ +/* even. We give an example where N = 6. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 05 00 */ +/* 11 12 13 14 15 10 11 */ +/* 22 23 24 25 20 21 22 */ +/* 33 34 35 30 31 32 33 */ +/* 44 45 40 41 42 43 44 */ +/* 55 50 51 52 53 54 55 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */ +/* the transpose of the first three columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */ +/* the transpose of the last three columns of AP lower. */ +/* This covers the case N even and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* 03 04 05 33 43 53 */ +/* 13 14 15 00 44 54 */ +/* 23 24 25 10 11 55 */ +/* 33 34 35 20 21 22 */ +/* 00 44 45 30 31 32 */ +/* 01 11 55 40 41 42 */ +/* 02 12 22 50 51 52 */ + +/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ +/* transpose of RFP A above. One therefore gets: */ + + +/* RFP A RFP A */ + +/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */ +/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */ +/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */ + + +/* We first consider Rectangular Full Packed (RFP) Format when N is */ +/* odd. We give an example where N = 5. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 00 */ +/* 11 12 13 14 10 11 */ +/* 22 23 24 20 21 22 */ +/* 33 34 30 31 32 33 */ +/* 44 40 41 42 43 44 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */ +/* the transpose of the first two columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */ +/* the transpose of the last two columns of AP lower. */ +/* This covers the case N odd and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* 02 03 04 00 33 43 */ +/* 12 13 14 10 11 44 */ +/* 22 23 24 20 21 22 */ +/* 00 33 34 30 31 32 */ +/* 01 11 44 40 41 42 */ + +/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ +/* transpose of RFP A above. One therefore gets: */ + +/* RFP A RFP A */ + +/* 02 12 22 00 01 00 10 20 30 40 50 */ +/* 03 13 23 33 11 33 11 21 31 41 51 */ +/* 04 14 24 34 44 43 44 22 32 42 52 */ + +/* Reference */ +/* ========= */ + +/* ===================================================================== */ + +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda - 1 - 0 + 1; + a_offset = 0 + a_dim1 * 0; + a -= a_offset; + + /* Function Body */ + *info = 0; + normaltransr = lsame_(transr, "N"); + lower = lsame_(uplo, "L"); + if (! normaltransr && ! lsame_(transr, "T")) { + *info = -1; + } else if (! lower && ! lsame_(uplo, "U")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DTRTTF", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n <= 1) { + if (*n == 1) { + arf[0] = a[0]; + } + return 0; + } + +/* Size of array ARF(0:nt-1) */ + + nt = *n * (*n + 1) / 2; + +/* Set N1 and N2 depending on LOWER: for N even N1=N2=K */ + + if (lower) { + n2 = *n / 2; + n1 = *n - n2; + } else { + n1 = *n / 2; + n2 = *n - n1; + } + +/* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. */ +/* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is */ +/* N--by--(N+1)/2. */ + + if (*n % 2 == 0) { + k = *n / 2; + nisodd = FALSE_; + if (! lower) { + np1x2 = *n + *n + 2; + } + } else { + nisodd = TRUE_; + if (! lower) { + nx2 = *n + *n; + } + } + + if (nisodd) { + +/* N is odd */ + + if (normaltransr) { + +/* N is odd and TRANSR = 'N' */ + + if (lower) { + +/* N is odd, TRANSR = 'N', and UPLO = 'L' */ + + ij = 0; + i__1 = n2; + for (j = 0; j <= i__1; ++j) { + i__2 = n2 + j; + for (i__ = n1; i__ <= i__2; ++i__) { + arf[ij] = a[n2 + j + i__ * a_dim1]; + ++ij; + } + i__2 = *n - 1; + for (i__ = j; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + } + + } else { + +/* N is odd, TRANSR = 'N', and UPLO = 'U' */ + + ij = nt - *n; + i__1 = n1; + for (j = *n - 1; j >= i__1; --j) { + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + i__2 = n1 - 1; + for (l = j - n1; l <= i__2; ++l) { + arf[ij] = a[j - n1 + l * a_dim1]; + ++ij; + } + ij -= nx2; + } + + } + + } else { + +/* N is odd and TRANSR = 'T' */ + + if (lower) { + +/* N is odd, TRANSR = 'T', and UPLO = 'L' */ + + ij = 0; + i__1 = n2 - 1; + for (j = 0; j <= i__1; ++j) { + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[j + i__ * a_dim1]; + ++ij; + } + i__2 = *n - 1; + for (i__ = n1 + j; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + (n1 + j) * a_dim1]; + ++ij; + } + } + i__1 = *n - 1; + for (j = n2; j <= i__1; ++j) { + i__2 = n1 - 1; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[j + i__ * a_dim1]; + ++ij; + } + } + + } else { + +/* N is odd, TRANSR = 'T', and UPLO = 'U' */ + + ij = 0; + i__1 = n1; + for (j = 0; j <= i__1; ++j) { + i__2 = *n - 1; + for (i__ = n1; i__ <= i__2; ++i__) { + arf[ij] = a[j + i__ * a_dim1]; + ++ij; + } + } + i__1 = n1 - 1; + for (j = 0; j <= i__1; ++j) { + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + i__2 = *n - 1; + for (l = n2 + j; l <= i__2; ++l) { + arf[ij] = a[n2 + j + l * a_dim1]; + ++ij; + } + } + + } + + } + + } else { + +/* N is even */ + + if (normaltransr) { + +/* N is even and TRANSR = 'N' */ + + if (lower) { + +/* N is even, TRANSR = 'N', and UPLO = 'L' */ + + ij = 0; + i__1 = k - 1; + for (j = 0; j <= i__1; ++j) { + i__2 = k + j; + for (i__ = k; i__ <= i__2; ++i__) { + arf[ij] = a[k + j + i__ * a_dim1]; + ++ij; + } + i__2 = *n - 1; + for (i__ = j; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + } + + } else { + +/* N is even, TRANSR = 'N', and UPLO = 'U' */ + + ij = nt - *n - 1; + i__1 = k; + for (j = *n - 1; j >= i__1; --j) { + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + i__2 = k - 1; + for (l = j - k; l <= i__2; ++l) { + arf[ij] = a[j - k + l * a_dim1]; + ++ij; + } + ij -= np1x2; + } + + } + + } else { + +/* N is even and TRANSR = 'T' */ + + if (lower) { + +/* N is even, TRANSR = 'T', and UPLO = 'L' */ + + ij = 0; + j = k; + i__1 = *n - 1; + for (i__ = k; i__ <= i__1; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + i__1 = k - 2; + for (j = 0; j <= i__1; ++j) { + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[j + i__ * a_dim1]; + ++ij; + } + i__2 = *n - 1; + for (i__ = k + 1 + j; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + (k + 1 + j) * a_dim1]; + ++ij; + } + } + i__1 = *n - 1; + for (j = k - 1; j <= i__1; ++j) { + i__2 = k - 1; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[j + i__ * a_dim1]; + ++ij; + } + } + + } else { + +/* N is even, TRANSR = 'T', and UPLO = 'U' */ + + ij = 0; + i__1 = k; + for (j = 0; j <= i__1; ++j) { + i__2 = *n - 1; + for (i__ = k; i__ <= i__2; ++i__) { + arf[ij] = a[j + i__ * a_dim1]; + ++ij; + } + } + i__1 = k - 2; + for (j = 0; j <= i__1; ++j) { + i__2 = j; + for (i__ = 0; i__ <= i__2; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + i__2 = *n - 1; + for (l = k + 1 + j; l <= i__2; ++l) { + arf[ij] = a[k + 1 + j + l * a_dim1]; + ++ij; + } + } +/* Note that here, on exit of the loop, J = K-1 */ + i__1 = j; + for (i__ = 0; i__ <= i__1; ++i__) { + arf[ij] = a[i__ + j * a_dim1]; + ++ij; + } + + } + + } + + } + + return 0; + +/* End of DTRTTF */ + +} /* dtrttf_ */ |