aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dtrsna.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dtrsna.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dtrsna.c')
-rw-r--r--contrib/libs/clapack/dtrsna.c606
1 files changed, 606 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dtrsna.c b/contrib/libs/clapack/dtrsna.c
new file mode 100644
index 0000000000..d0f26f187f
--- /dev/null
+++ b/contrib/libs/clapack/dtrsna.c
@@ -0,0 +1,606 @@
+/* dtrsna.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static logical c_true = TRUE_;
+static logical c_false = FALSE_;
+
+/* Subroutine */ int dtrsna_(char *job, char *howmny, logical *select,
+ integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
+ ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep,
+ integer *mm, integer *m, doublereal *work, integer *ldwork, integer *
+ iwork, integer *info)
+{
+ /* System generated locals */
+ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
+ work_dim1, work_offset, i__1, i__2;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, k, n2;
+ doublereal cs;
+ integer nn, ks;
+ doublereal sn, mu, eps, est;
+ integer kase;
+ doublereal cond;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ logical pair;
+ integer ierr;
+ doublereal dumm, prod;
+ integer ifst;
+ doublereal lnrm;
+ integer ilst;
+ doublereal rnrm;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ doublereal prod1, prod2, scale, delta;
+ extern logical lsame_(char *, char *);
+ integer isave[3];
+ logical wants;
+ doublereal dummy[1];
+ extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *);
+ extern doublereal dlapy2_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *),
+ xerbla_(char *, integer *);
+ doublereal bignum;
+ logical wantbh;
+ extern /* Subroutine */ int dlaqtr_(logical *, logical *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, integer *), dtrexc_(char *, integer *
+, doublereal *, integer *, doublereal *, integer *, integer *,
+ integer *, doublereal *, integer *);
+ logical somcon;
+ doublereal smlnum;
+ logical wantsp;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DTRSNA estimates reciprocal condition numbers for specified */
+/* eigenvalues and/or right eigenvectors of a real upper */
+/* quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
+/* orthogonal). */
+
+/* T must be in Schur canonical form (as returned by DHSEQR), that is, */
+/* block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
+/* 2-by-2 diagonal block has its diagonal elements equal and its */
+/* off-diagonal elements of opposite sign. */
+
+/* Arguments */
+/* ========= */
+
+/* JOB (input) CHARACTER*1 */
+/* Specifies whether condition numbers are required for */
+/* eigenvalues (S) or eigenvectors (SEP): */
+/* = 'E': for eigenvalues only (S); */
+/* = 'V': for eigenvectors only (SEP); */
+/* = 'B': for both eigenvalues and eigenvectors (S and SEP). */
+
+/* HOWMNY (input) CHARACTER*1 */
+/* = 'A': compute condition numbers for all eigenpairs; */
+/* = 'S': compute condition numbers for selected eigenpairs */
+/* specified by the array SELECT. */
+
+/* SELECT (input) LOGICAL array, dimension (N) */
+/* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
+/* condition numbers are required. To select condition numbers */
+/* for the eigenpair corresponding to a real eigenvalue w(j), */
+/* SELECT(j) must be set to .TRUE.. To select condition numbers */
+/* corresponding to a complex conjugate pair of eigenvalues w(j) */
+/* and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
+/* set to .TRUE.. */
+/* If HOWMNY = 'A', SELECT is not referenced. */
+
+/* N (input) INTEGER */
+/* The order of the matrix T. N >= 0. */
+
+/* T (input) DOUBLE PRECISION array, dimension (LDT,N) */
+/* The upper quasi-triangular matrix T, in Schur canonical form. */
+
+/* LDT (input) INTEGER */
+/* The leading dimension of the array T. LDT >= max(1,N). */
+
+/* VL (input) DOUBLE PRECISION array, dimension (LDVL,M) */
+/* If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
+/* (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
+/* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
+/* must be stored in consecutive columns of VL, as returned by */
+/* DHSEIN or DTREVC. */
+/* If JOB = 'V', VL is not referenced. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the array VL. */
+/* LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
+
+/* VR (input) DOUBLE PRECISION array, dimension (LDVR,M) */
+/* If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
+/* (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
+/* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
+/* must be stored in consecutive columns of VR, as returned by */
+/* DHSEIN or DTREVC. */
+/* If JOB = 'V', VR is not referenced. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. */
+/* LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
+
+/* S (output) DOUBLE PRECISION array, dimension (MM) */
+/* If JOB = 'E' or 'B', the reciprocal condition numbers of the */
+/* selected eigenvalues, stored in consecutive elements of the */
+/* array. For a complex conjugate pair of eigenvalues two */
+/* consecutive elements of S are set to the same value. Thus */
+/* S(j), SEP(j), and the j-th columns of VL and VR all */
+/* correspond to the same eigenpair (but not in general the */
+/* j-th eigenpair, unless all eigenpairs are selected). */
+/* If JOB = 'V', S is not referenced. */
+
+/* SEP (output) DOUBLE PRECISION array, dimension (MM) */
+/* If JOB = 'V' or 'B', the estimated reciprocal condition */
+/* numbers of the selected eigenvectors, stored in consecutive */
+/* elements of the array. For a complex eigenvector two */
+/* consecutive elements of SEP are set to the same value. If */
+/* the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
+/* is set to 0; this can only occur when the true value would be */
+/* very small anyway. */
+/* If JOB = 'E', SEP is not referenced. */
+
+/* MM (input) INTEGER */
+/* The number of elements in the arrays S (if JOB = 'E' or 'B') */
+/* and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
+
+/* M (output) INTEGER */
+/* The number of elements of the arrays S and/or SEP actually */
+/* used to store the estimated condition numbers. */
+/* If HOWMNY = 'A', M is set to N. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,N+6) */
+/* If JOB = 'E', WORK is not referenced. */
+
+/* LDWORK (input) INTEGER */
+/* The leading dimension of the array WORK. */
+/* LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
+
+/* IWORK (workspace) INTEGER array, dimension (2*(N-1)) */
+/* If JOB = 'E', IWORK is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* The reciprocal of the condition number of an eigenvalue lambda is */
+/* defined as */
+
+/* S(lambda) = |v'*u| / (norm(u)*norm(v)) */
+
+/* where u and v are the right and left eigenvectors of T corresponding */
+/* to lambda; v' denotes the conjugate-transpose of v, and norm(u) */
+/* denotes the Euclidean norm. These reciprocal condition numbers always */
+/* lie between zero (very badly conditioned) and one (very well */
+/* conditioned). If n = 1, S(lambda) is defined to be 1. */
+
+/* An approximate error bound for a computed eigenvalue W(i) is given by */
+
+/* EPS * norm(T) / S(i) */
+
+/* where EPS is the machine precision. */
+
+/* The reciprocal of the condition number of the right eigenvector u */
+/* corresponding to lambda is defined as follows. Suppose */
+
+/* T = ( lambda c ) */
+/* ( 0 T22 ) */
+
+/* Then the reciprocal condition number is */
+
+/* SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) */
+
+/* where sigma-min denotes the smallest singular value. We approximate */
+/* the smallest singular value by the reciprocal of an estimate of the */
+/* one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
+/* defined to be abs(T(1,1)). */
+
+/* An approximate error bound for a computed right eigenvector VR(i) */
+/* is given by */
+
+/* EPS * norm(T) / SEP(i) */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test the input parameters */
+
+ /* Parameter adjustments */
+ --select;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --s;
+ --sep;
+ work_dim1 = *ldwork;
+ work_offset = 1 + work_dim1;
+ work -= work_offset;
+ --iwork;
+
+ /* Function Body */
+ wantbh = lsame_(job, "B");
+ wants = lsame_(job, "E") || wantbh;
+ wantsp = lsame_(job, "V") || wantbh;
+
+ somcon = lsame_(howmny, "S");
+
+ *info = 0;
+ if (! wants && ! wantsp) {
+ *info = -1;
+ } else if (! lsame_(howmny, "A") && ! somcon) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ldt < max(1,*n)) {
+ *info = -6;
+ } else if (*ldvl < 1 || wants && *ldvl < *n) {
+ *info = -8;
+ } else if (*ldvr < 1 || wants && *ldvr < *n) {
+ *info = -10;
+ } else {
+
+/* Set M to the number of eigenpairs for which condition numbers */
+/* are required, and test MM. */
+
+ if (somcon) {
+ *m = 0;
+ pair = FALSE_;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (pair) {
+ pair = FALSE_;
+ } else {
+ if (k < *n) {
+ if (t[k + 1 + k * t_dim1] == 0.) {
+ if (select[k]) {
+ ++(*m);
+ }
+ } else {
+ pair = TRUE_;
+ if (select[k] || select[k + 1]) {
+ *m += 2;
+ }
+ }
+ } else {
+ if (select[*n]) {
+ ++(*m);
+ }
+ }
+ }
+/* L10: */
+ }
+ } else {
+ *m = *n;
+ }
+
+ if (*mm < *m) {
+ *info = -13;
+ } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
+ *info = -16;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DTRSNA", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ if (somcon) {
+ if (! select[1]) {
+ return 0;
+ }
+ }
+ if (wants) {
+ s[1] = 1.;
+ }
+ if (wantsp) {
+ sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1));
+ }
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = dlamch_("P");
+ smlnum = dlamch_("S") / eps;
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+
+ ks = 0;
+ pair = FALSE_;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+
+/* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
+
+ if (pair) {
+ pair = FALSE_;
+ goto L60;
+ } else {
+ if (k < *n) {
+ pair = t[k + 1 + k * t_dim1] != 0.;
+ }
+ }
+
+/* Determine whether condition numbers are required for the k-th */
+/* eigenpair. */
+
+ if (somcon) {
+ if (pair) {
+ if (! select[k] && ! select[k + 1]) {
+ goto L60;
+ }
+ } else {
+ if (! select[k]) {
+ goto L60;
+ }
+ }
+ }
+
+ ++ks;
+
+ if (wants) {
+
+/* Compute the reciprocal condition number of the k-th */
+/* eigenvalue. */
+
+ if (! pair) {
+
+/* Real eigenvalue. */
+
+ prod = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
+ vl_dim1 + 1], &c__1);
+ rnrm = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
+ lnrm = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
+ s[ks] = abs(prod) / (rnrm * lnrm);
+ } else {
+
+/* Complex eigenvalue. */
+
+ prod1 = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
+ vl_dim1 + 1], &c__1);
+ prod1 += ddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks
+ + 1) * vl_dim1 + 1], &c__1);
+ prod2 = ddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) *
+ vr_dim1 + 1], &c__1);
+ prod2 -= ddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
+ vr_dim1 + 1], &c__1);
+ d__1 = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
+ d__2 = dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
+ rnrm = dlapy2_(&d__1, &d__2);
+ d__1 = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
+ d__2 = dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
+ lnrm = dlapy2_(&d__1, &d__2);
+ cond = dlapy2_(&prod1, &prod2) / (rnrm * lnrm);
+ s[ks] = cond;
+ s[ks + 1] = cond;
+ }
+ }
+
+ if (wantsp) {
+
+/* Estimate the reciprocal condition number of the k-th */
+/* eigenvector. */
+
+/* Copy the matrix T to the array WORK and swap the diagonal */
+/* block beginning at T(k,k) to the (1,1) position. */
+
+ dlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
+ ldwork);
+ ifst = k;
+ ilst = 1;
+ dtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
+ ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
+
+ if (ierr == 1 || ierr == 2) {
+
+/* Could not swap because blocks not well separated */
+
+ scale = 1.;
+ est = bignum;
+ } else {
+
+/* Reordering successful */
+
+ if (work[work_dim1 + 2] == 0.) {
+
+/* Form C = T22 - lambda*I in WORK(2:N,2:N). */
+
+ i__2 = *n;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
+/* L20: */
+ }
+ n2 = 1;
+ nn = *n - 1;
+ } else {
+
+/* Triangularize the 2 by 2 block by unitary */
+/* transformation U = [ cs i*ss ] */
+/* [ i*ss cs ]. */
+/* such that the (1,1) position of WORK is complex */
+/* eigenvalue lambda with positive imaginary part. (2,2) */
+/* position of WORK is the complex eigenvalue lambda */
+/* with negative imaginary part. */
+
+ mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1)))
+ * sqrt((d__2 = work[work_dim1 + 2], abs(d__2)));
+ delta = dlapy2_(&mu, &work[work_dim1 + 2]);
+ cs = mu / delta;
+ sn = -work[work_dim1 + 2] / delta;
+
+/* Form */
+
+/* C' = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
+/* [ mu ] */
+/* [ .. ] */
+/* [ .. ] */
+/* [ mu ] */
+/* where C' is conjugate transpose of complex matrix C, */
+/* and RWORK is stored starting in the N+1-st column of */
+/* WORK. */
+
+ i__2 = *n;
+ for (j = 3; j <= i__2; ++j) {
+ work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
+ ;
+ work[j + j * work_dim1] -= work[work_dim1 + 1];
+/* L30: */
+ }
+ work[(work_dim1 << 1) + 2] = 0.;
+
+ work[(*n + 1) * work_dim1 + 1] = mu * 2.;
+ i__2 = *n - 1;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
+ * work_dim1 + 1];
+/* L40: */
+ }
+ n2 = 2;
+ nn = *n - 1 << 1;
+ }
+
+/* Estimate norm(inv(C')) */
+
+ est = 0.;
+ kase = 0;
+L50:
+ dlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
+ work_dim1 + 1], &iwork[1], &est, &kase, isave);
+ if (kase != 0) {
+ if (kase == 1) {
+ if (n2 == 1) {
+
+/* Real eigenvalue: solve C'*x = scale*c. */
+
+ i__2 = *n - 1;
+ dlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1
+ << 1) + 2], ldwork, dummy, &dumm, &scale,
+ &work[(*n + 4) * work_dim1 + 1], &work[(*
+ n + 6) * work_dim1 + 1], &ierr);
+ } else {
+
+/* Complex eigenvalue: solve */
+/* C'*(p+iq) = scale*(c+id) in real arithmetic. */
+
+ i__2 = *n - 1;
+ dlaqtr_(&c_true, &c_false, &i__2, &work[(
+ work_dim1 << 1) + 2], ldwork, &work[(*n +
+ 1) * work_dim1 + 1], &mu, &scale, &work[(*
+ n + 4) * work_dim1 + 1], &work[(*n + 6) *
+ work_dim1 + 1], &ierr);
+ }
+ } else {
+ if (n2 == 1) {
+
+/* Real eigenvalue: solve C*x = scale*c. */
+
+ i__2 = *n - 1;
+ dlaqtr_(&c_false, &c_true, &i__2, &work[(
+ work_dim1 << 1) + 2], ldwork, dummy, &
+ dumm, &scale, &work[(*n + 4) * work_dim1
+ + 1], &work[(*n + 6) * work_dim1 + 1], &
+ ierr);
+ } else {
+
+/* Complex eigenvalue: solve */
+/* C*(p+iq) = scale*(c+id) in real arithmetic. */
+
+ i__2 = *n - 1;
+ dlaqtr_(&c_false, &c_false, &i__2, &work[(
+ work_dim1 << 1) + 2], ldwork, &work[(*n +
+ 1) * work_dim1 + 1], &mu, &scale, &work[(*
+ n + 4) * work_dim1 + 1], &work[(*n + 6) *
+ work_dim1 + 1], &ierr);
+
+ }
+ }
+
+ goto L50;
+ }
+ }
+
+ sep[ks] = scale / max(est,smlnum);
+ if (pair) {
+ sep[ks + 1] = sep[ks];
+ }
+ }
+
+ if (pair) {
+ ++ks;
+ }
+
+L60:
+ ;
+ }
+ return 0;
+
+/* End of DTRSNA */
+
+} /* dtrsna_ */