diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dtgsyl.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dtgsyl.c')
-rw-r--r-- | contrib/libs/clapack/dtgsyl.c | 692 |
1 files changed, 692 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dtgsyl.c b/contrib/libs/clapack/dtgsyl.c new file mode 100644 index 0000000000..5c44e8a407 --- /dev/null +++ b/contrib/libs/clapack/dtgsyl.c @@ -0,0 +1,692 @@ +/* dtgsyl.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__2 = 2; +static integer c_n1 = -1; +static integer c__5 = 5; +static doublereal c_b14 = 0.; +static integer c__1 = 1; +static doublereal c_b51 = -1.; +static doublereal c_b52 = 1.; + +/* Subroutine */ int dtgsyl_(char *trans, integer *ijob, integer *m, integer * + n, doublereal *a, integer *lda, doublereal *b, integer *ldb, + doublereal *c__, integer *ldc, doublereal *d__, integer *ldd, + doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal * + scale, doublereal *dif, doublereal *work, integer *lwork, integer * + iwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, + d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3, + i__4; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, k, p, q, ie, je, mb, nb, is, js, pq; + doublereal dsum; + integer ppqq; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *), dgemm_(char *, char *, integer *, integer *, integer * +, doublereal *, doublereal *, integer *, doublereal *, integer *, + doublereal *, doublereal *, integer *); + extern logical lsame_(char *, char *); + integer ifunc, linfo, lwmin; + doublereal scale2; + extern /* Subroutine */ int dtgsy2_(char *, integer *, integer *, integer + *, doublereal *, integer *, doublereal *, integer *, doublereal *, + integer *, doublereal *, integer *, doublereal *, integer *, + doublereal *, integer *, doublereal *, doublereal *, doublereal *, + integer *, integer *, integer *); + doublereal dscale, scaloc; + extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, + doublereal *, integer *, doublereal *, integer *), + dlaset_(char *, integer *, integer *, doublereal *, doublereal *, + doublereal *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + integer iround; + logical notran; + integer isolve; + logical lquery; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DTGSYL solves the generalized Sylvester equation: */ + +/* A * R - L * B = scale * C (1) */ +/* D * R - L * E = scale * F */ + +/* where R and L are unknown m-by-n matrices, (A, D), (B, E) and */ +/* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */ +/* respectively, with real entries. (A, D) and (B, E) must be in */ +/* generalized (real) Schur canonical form, i.e. A, B are upper quasi */ +/* triangular and D, E are upper triangular. */ + +/* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */ +/* scaling factor chosen to avoid overflow. */ + +/* In matrix notation (1) is equivalent to solve Zx = scale b, where */ +/* Z is defined as */ + +/* Z = [ kron(In, A) -kron(B', Im) ] (2) */ +/* [ kron(In, D) -kron(E', Im) ]. */ + +/* Here Ik is the identity matrix of size k and X' is the transpose of */ +/* X. kron(X, Y) is the Kronecker product between the matrices X and Y. */ + +/* If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, */ +/* which is equivalent to solve for R and L in */ + +/* A' * R + D' * L = scale * C (3) */ +/* R * B' + L * E' = scale * (-F) */ + +/* This case (TRANS = 'T') is used to compute an one-norm-based estimate */ +/* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */ +/* and (B,E), using DLACON. */ + +/* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate */ +/* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */ +/* reciprocal of the smallest singular value of Z. See [1-2] for more */ +/* information. */ + +/* This is a level 3 BLAS algorithm. */ + +/* Arguments */ +/* ========= */ + +/* TRANS (input) CHARACTER*1 */ +/* = 'N', solve the generalized Sylvester equation (1). */ +/* = 'T', solve the 'transposed' system (3). */ + +/* IJOB (input) INTEGER */ +/* Specifies what kind of functionality to be performed. */ +/* =0: solve (1) only. */ +/* =1: The functionality of 0 and 3. */ +/* =2: The functionality of 0 and 4. */ +/* =3: Only an estimate of Dif[(A,D), (B,E)] is computed. */ +/* (look ahead strategy IJOB = 1 is used). */ +/* =4: Only an estimate of Dif[(A,D), (B,E)] is computed. */ +/* ( DGECON on sub-systems is used ). */ +/* Not referenced if TRANS = 'T'. */ + +/* M (input) INTEGER */ +/* The order of the matrices A and D, and the row dimension of */ +/* the matrices C, F, R and L. */ + +/* N (input) INTEGER */ +/* The order of the matrices B and E, and the column dimension */ +/* of the matrices C, F, R and L. */ + +/* A (input) DOUBLE PRECISION array, dimension (LDA, M) */ +/* The upper quasi triangular matrix A. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1, M). */ + +/* B (input) DOUBLE PRECISION array, dimension (LDB, N) */ +/* The upper quasi triangular matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1, N). */ + +/* C (input/output) DOUBLE PRECISION array, dimension (LDC, N) */ +/* On entry, C contains the right-hand-side of the first matrix */ +/* equation in (1) or (3). */ +/* On exit, if IJOB = 0, 1 or 2, C has been overwritten by */ +/* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */ +/* the solution achieved during the computation of the */ +/* Dif-estimate. */ + +/* LDC (input) INTEGER */ +/* The leading dimension of the array C. LDC >= max(1, M). */ + +/* D (input) DOUBLE PRECISION array, dimension (LDD, M) */ +/* The upper triangular matrix D. */ + +/* LDD (input) INTEGER */ +/* The leading dimension of the array D. LDD >= max(1, M). */ + +/* E (input) DOUBLE PRECISION array, dimension (LDE, N) */ +/* The upper triangular matrix E. */ + +/* LDE (input) INTEGER */ +/* The leading dimension of the array E. LDE >= max(1, N). */ + +/* F (input/output) DOUBLE PRECISION array, dimension (LDF, N) */ +/* On entry, F contains the right-hand-side of the second matrix */ +/* equation in (1) or (3). */ +/* On exit, if IJOB = 0, 1 or 2, F has been overwritten by */ +/* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */ +/* the solution achieved during the computation of the */ +/* Dif-estimate. */ + +/* LDF (input) INTEGER */ +/* The leading dimension of the array F. LDF >= max(1, M). */ + +/* DIF (output) DOUBLE PRECISION */ +/* On exit DIF is the reciprocal of a lower bound of the */ +/* reciprocal of the Dif-function, i.e. DIF is an upper bound of */ +/* Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */ +/* IF IJOB = 0 or TRANS = 'T', DIF is not touched. */ + +/* SCALE (output) DOUBLE PRECISION */ +/* On exit SCALE is the scaling factor in (1) or (3). */ +/* If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */ +/* to a slightly perturbed system but the input matrices A, B, D */ +/* and E have not been changed. If SCALE = 0, C and F hold the */ +/* solutions R and L, respectively, to the homogeneous system */ +/* with C = F = 0. Normally, SCALE = 1. */ + +/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK > = 1. */ +/* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* IWORK (workspace) INTEGER array, dimension (M+N+6) */ + +/* INFO (output) INTEGER */ +/* =0: successful exit */ +/* <0: If INFO = -i, the i-th argument had an illegal value. */ +/* >0: (A, D) and (B, E) have common or close eigenvalues. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */ +/* for Solving the Generalized Sylvester Equation and Estimating the */ +/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */ +/* Department of Computing Science, Umea University, S-901 87 Umea, */ +/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */ +/* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */ +/* No 1, 1996. */ + +/* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */ +/* Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */ +/* Appl., 15(4):1045-1060, 1994 */ + +/* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */ +/* Condition Estimators for Solving the Generalized Sylvester */ +/* Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */ +/* July 1989, pp 745-751. */ + +/* ===================================================================== */ +/* Replaced various illegal calls to DCOPY by calls to DLASET. */ +/* Sven Hammarling, 1/5/02. */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and test input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + d_dim1 = *ldd; + d_offset = 1 + d_dim1; + d__ -= d_offset; + e_dim1 = *lde; + e_offset = 1 + e_dim1; + e -= e_offset; + f_dim1 = *ldf; + f_offset = 1 + f_dim1; + f -= f_offset; + --work; + --iwork; + + /* Function Body */ + *info = 0; + notran = lsame_(trans, "N"); + lquery = *lwork == -1; + + if (! notran && ! lsame_(trans, "T")) { + *info = -1; + } else if (notran) { + if (*ijob < 0 || *ijob > 4) { + *info = -2; + } + } + if (*info == 0) { + if (*m <= 0) { + *info = -3; + } else if (*n <= 0) { + *info = -4; + } else if (*lda < max(1,*m)) { + *info = -6; + } else if (*ldb < max(1,*n)) { + *info = -8; + } else if (*ldc < max(1,*m)) { + *info = -10; + } else if (*ldd < max(1,*m)) { + *info = -12; + } else if (*lde < max(1,*n)) { + *info = -14; + } else if (*ldf < max(1,*m)) { + *info = -16; + } + } + + if (*info == 0) { + if (notran) { + if (*ijob == 1 || *ijob == 2) { +/* Computing MAX */ + i__1 = 1, i__2 = (*m << 1) * *n; + lwmin = max(i__1,i__2); + } else { + lwmin = 1; + } + } else { + lwmin = 1; + } + work[1] = (doublereal) lwmin; + + if (*lwork < lwmin && ! lquery) { + *info = -20; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("DTGSYL", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + *scale = 1.; + if (notran) { + if (*ijob != 0) { + *dif = 0.; + } + } + return 0; + } + +/* Determine optimal block sizes MB and NB */ + + mb = ilaenv_(&c__2, "DTGSYL", trans, m, n, &c_n1, &c_n1); + nb = ilaenv_(&c__5, "DTGSYL", trans, m, n, &c_n1, &c_n1); + + isolve = 1; + ifunc = 0; + if (notran) { + if (*ijob >= 3) { + ifunc = *ijob - 2; + dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc) + ; + dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf); + } else if (*ijob >= 1) { + isolve = 2; + } + } + + if (mb <= 1 && nb <= 1 || mb >= *m && nb >= *n) { + + i__1 = isolve; + for (iround = 1; iround <= i__1; ++iround) { + +/* Use unblocked Level 2 solver */ + + dscale = 0.; + dsum = 1.; + pq = 0; + dtgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb, + &c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset], + lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1], + &pq, info); + if (dscale != 0.) { + if (*ijob == 1 || *ijob == 3) { + *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale * + sqrt(dsum)); + } else { + *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum)); + } + } + + if (isolve == 2 && iround == 1) { + if (notran) { + ifunc = *ijob; + } + scale2 = *scale; + dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m); + dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m); + dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc); + dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf); + } else if (isolve == 2 && iround == 2) { + dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc); + dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf); + *scale = scale2; + } +/* L30: */ + } + + return 0; + } + +/* Determine block structure of A */ + + p = 0; + i__ = 1; +L40: + if (i__ > *m) { + goto L50; + } + ++p; + iwork[p] = i__; + i__ += mb; + if (i__ >= *m) { + goto L50; + } + if (a[i__ + (i__ - 1) * a_dim1] != 0.) { + ++i__; + } + goto L40; +L50: + + iwork[p + 1] = *m + 1; + if (iwork[p] == iwork[p + 1]) { + --p; + } + +/* Determine block structure of B */ + + q = p + 1; + j = 1; +L60: + if (j > *n) { + goto L70; + } + ++q; + iwork[q] = j; + j += nb; + if (j >= *n) { + goto L70; + } + if (b[j + (j - 1) * b_dim1] != 0.) { + ++j; + } + goto L60; +L70: + + iwork[q + 1] = *n + 1; + if (iwork[q] == iwork[q + 1]) { + --q; + } + + if (notran) { + + i__1 = isolve; + for (iround = 1; iround <= i__1; ++iround) { + +/* Solve (I, J)-subsystem */ +/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */ +/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */ +/* for I = P, P - 1,..., 1; J = 1, 2,..., Q */ + + dscale = 0.; + dsum = 1.; + pq = 0; + *scale = 1.; + i__2 = q; + for (j = p + 2; j <= i__2; ++j) { + js = iwork[j]; + je = iwork[j + 1] - 1; + nb = je - js + 1; + for (i__ = p; i__ >= 1; --i__) { + is = iwork[i__]; + ie = iwork[i__ + 1] - 1; + mb = ie - is + 1; + ppqq = 0; + dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], + lda, &b[js + js * b_dim1], ldb, &c__[is + js * + c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js + + js * e_dim1], lde, &f[is + js * f_dim1], ldf, & + scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, & + linfo); + if (linfo > 0) { + *info = linfo; + } + + pq += ppqq; + if (scaloc != 1.) { + i__3 = js - 1; + for (k = 1; k <= i__3; ++k) { + dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L80: */ + } + i__3 = je; + for (k = js; k <= i__3; ++k) { + i__4 = is - 1; + dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], & + c__1); + i__4 = is - 1; + dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L90: */ + } + i__3 = je; + for (k = js; k <= i__3; ++k) { + i__4 = *m - ie; + dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], + &c__1); + i__4 = *m - ie; + dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], & + c__1); +/* L100: */ + } + i__3 = *n; + for (k = je + 1; k <= i__3; ++k) { + dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L110: */ + } + *scale *= scaloc; + } + +/* Substitute R(I, J) and L(I, J) into remaining */ +/* equation. */ + + if (i__ > 1) { + i__3 = is - 1; + dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &a[is * + a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc, + &c_b52, &c__[js * c_dim1 + 1], ldc); + i__3 = is - 1; + dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &d__[is * + d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc, + &c_b52, &f[js * f_dim1 + 1], ldf); + } + if (j < q) { + i__3 = *n - je; + dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js * + f_dim1], ldf, &b[js + (je + 1) * b_dim1], + ldb, &c_b52, &c__[is + (je + 1) * c_dim1], + ldc); + i__3 = *n - je; + dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js * + f_dim1], ldf, &e[js + (je + 1) * e_dim1], + lde, &c_b52, &f[is + (je + 1) * f_dim1], ldf); + } +/* L120: */ + } +/* L130: */ + } + if (dscale != 0.) { + if (*ijob == 1 || *ijob == 3) { + *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale * + sqrt(dsum)); + } else { + *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum)); + } + } + if (isolve == 2 && iround == 1) { + if (notran) { + ifunc = *ijob; + } + scale2 = *scale; + dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m); + dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m); + dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc); + dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf); + } else if (isolve == 2 && iround == 2) { + dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc); + dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf); + *scale = scale2; + } +/* L150: */ + } + + } else { + +/* Solve transposed (I, J)-subsystem */ +/* A(I, I)' * R(I, J) + D(I, I)' * L(I, J) = C(I, J) */ +/* R(I, J) * B(J, J)' + L(I, J) * E(J, J)' = -F(I, J) */ +/* for I = 1,2,..., P; J = Q, Q-1,..., 1 */ + + *scale = 1.; + i__1 = p; + for (i__ = 1; i__ <= i__1; ++i__) { + is = iwork[i__]; + ie = iwork[i__ + 1] - 1; + mb = ie - is + 1; + i__2 = p + 2; + for (j = q; j >= i__2; --j) { + js = iwork[j]; + je = iwork[j + 1] - 1; + nb = je - js + 1; + dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, & + b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc, + &d__[is + is * d_dim1], ldd, &e[js + js * e_dim1], + lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, & + dscale, &iwork[q + 2], &ppqq, &linfo); + if (linfo > 0) { + *info = linfo; + } + if (scaloc != 1.) { + i__3 = js - 1; + for (k = 1; k <= i__3; ++k) { + dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L160: */ + } + i__3 = je; + for (k = js; k <= i__3; ++k) { + i__4 = is - 1; + dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1); + i__4 = is - 1; + dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L170: */ + } + i__3 = je; + for (k = js; k <= i__3; ++k) { + i__4 = *m - ie; + dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], & + c__1); + i__4 = *m - ie; + dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1) + ; +/* L180: */ + } + i__3 = *n; + for (k = je + 1; k <= i__3; ++k) { + dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1); + dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1); +/* L190: */ + } + *scale *= scaloc; + } + +/* Substitute R(I, J) and L(I, J) into remaining equation. */ + + if (j > p + 2) { + i__3 = js - 1; + dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &c__[is + js * + c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b52, & + f[is + f_dim1], ldf); + i__3 = js - 1; + dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &f[is + js * + f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b52, & + f[is + f_dim1], ldf); + } + if (i__ < p) { + i__3 = *m - ie; + dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &a[is + (ie + 1) + * a_dim1], lda, &c__[is + js * c_dim1], ldc, & + c_b52, &c__[ie + 1 + js * c_dim1], ldc); + i__3 = *m - ie; + dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &d__[is + (ie + + 1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, & + c_b52, &c__[ie + 1 + js * c_dim1], ldc); + } +/* L200: */ + } +/* L210: */ + } + + } + + work[1] = (doublereal) lwmin; + + return 0; + +/* End of DTGSYL */ + +} /* dtgsyl_ */ |