aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dtgsyl.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dtgsyl.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dtgsyl.c')
-rw-r--r--contrib/libs/clapack/dtgsyl.c692
1 files changed, 692 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dtgsyl.c b/contrib/libs/clapack/dtgsyl.c
new file mode 100644
index 0000000000..5c44e8a407
--- /dev/null
+++ b/contrib/libs/clapack/dtgsyl.c
@@ -0,0 +1,692 @@
+/* dtgsyl.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__2 = 2;
+static integer c_n1 = -1;
+static integer c__5 = 5;
+static doublereal c_b14 = 0.;
+static integer c__1 = 1;
+static doublereal c_b51 = -1.;
+static doublereal c_b52 = 1.;
+
+/* Subroutine */ int dtgsyl_(char *trans, integer *ijob, integer *m, integer *
+ n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
+ doublereal *c__, integer *ldc, doublereal *d__, integer *ldd,
+ doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *
+ scale, doublereal *dif, doublereal *work, integer *lwork, integer *
+ iwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
+ d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
+ i__4;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, k, p, q, ie, je, mb, nb, is, js, pq;
+ doublereal dsum;
+ integer ppqq;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *), dgemm_(char *, char *, integer *, integer *, integer *
+, doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *);
+ extern logical lsame_(char *, char *);
+ integer ifunc, linfo, lwmin;
+ doublereal scale2;
+ extern /* Subroutine */ int dtgsy2_(char *, integer *, integer *, integer
+ *, doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, integer *, integer *);
+ doublereal dscale, scaloc;
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *),
+ dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ integer iround;
+ logical notran;
+ integer isolve;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DTGSYL solves the generalized Sylvester equation: */
+
+/* A * R - L * B = scale * C (1) */
+/* D * R - L * E = scale * F */
+
+/* where R and L are unknown m-by-n matrices, (A, D), (B, E) and */
+/* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */
+/* respectively, with real entries. (A, D) and (B, E) must be in */
+/* generalized (real) Schur canonical form, i.e. A, B are upper quasi */
+/* triangular and D, E are upper triangular. */
+
+/* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
+/* scaling factor chosen to avoid overflow. */
+
+/* In matrix notation (1) is equivalent to solve Zx = scale b, where */
+/* Z is defined as */
+
+/* Z = [ kron(In, A) -kron(B', Im) ] (2) */
+/* [ kron(In, D) -kron(E', Im) ]. */
+
+/* Here Ik is the identity matrix of size k and X' is the transpose of */
+/* X. kron(X, Y) is the Kronecker product between the matrices X and Y. */
+
+/* If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, */
+/* which is equivalent to solve for R and L in */
+
+/* A' * R + D' * L = scale * C (3) */
+/* R * B' + L * E' = scale * (-F) */
+
+/* This case (TRANS = 'T') is used to compute an one-norm-based estimate */
+/* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */
+/* and (B,E), using DLACON. */
+
+/* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate */
+/* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */
+/* reciprocal of the smallest singular value of Z. See [1-2] for more */
+/* information. */
+
+/* This is a level 3 BLAS algorithm. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANS (input) CHARACTER*1 */
+/* = 'N', solve the generalized Sylvester equation (1). */
+/* = 'T', solve the 'transposed' system (3). */
+
+/* IJOB (input) INTEGER */
+/* Specifies what kind of functionality to be performed. */
+/* =0: solve (1) only. */
+/* =1: The functionality of 0 and 3. */
+/* =2: The functionality of 0 and 4. */
+/* =3: Only an estimate of Dif[(A,D), (B,E)] is computed. */
+/* (look ahead strategy IJOB = 1 is used). */
+/* =4: Only an estimate of Dif[(A,D), (B,E)] is computed. */
+/* ( DGECON on sub-systems is used ). */
+/* Not referenced if TRANS = 'T'. */
+
+/* M (input) INTEGER */
+/* The order of the matrices A and D, and the row dimension of */
+/* the matrices C, F, R and L. */
+
+/* N (input) INTEGER */
+/* The order of the matrices B and E, and the column dimension */
+/* of the matrices C, F, R and L. */
+
+/* A (input) DOUBLE PRECISION array, dimension (LDA, M) */
+/* The upper quasi triangular matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1, M). */
+
+/* B (input) DOUBLE PRECISION array, dimension (LDB, N) */
+/* The upper quasi triangular matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1, N). */
+
+/* C (input/output) DOUBLE PRECISION array, dimension (LDC, N) */
+/* On entry, C contains the right-hand-side of the first matrix */
+/* equation in (1) or (3). */
+/* On exit, if IJOB = 0, 1 or 2, C has been overwritten by */
+/* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */
+/* the solution achieved during the computation of the */
+/* Dif-estimate. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. LDC >= max(1, M). */
+
+/* D (input) DOUBLE PRECISION array, dimension (LDD, M) */
+/* The upper triangular matrix D. */
+
+/* LDD (input) INTEGER */
+/* The leading dimension of the array D. LDD >= max(1, M). */
+
+/* E (input) DOUBLE PRECISION array, dimension (LDE, N) */
+/* The upper triangular matrix E. */
+
+/* LDE (input) INTEGER */
+/* The leading dimension of the array E. LDE >= max(1, N). */
+
+/* F (input/output) DOUBLE PRECISION array, dimension (LDF, N) */
+/* On entry, F contains the right-hand-side of the second matrix */
+/* equation in (1) or (3). */
+/* On exit, if IJOB = 0, 1 or 2, F has been overwritten by */
+/* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */
+/* the solution achieved during the computation of the */
+/* Dif-estimate. */
+
+/* LDF (input) INTEGER */
+/* The leading dimension of the array F. LDF >= max(1, M). */
+
+/* DIF (output) DOUBLE PRECISION */
+/* On exit DIF is the reciprocal of a lower bound of the */
+/* reciprocal of the Dif-function, i.e. DIF is an upper bound of */
+/* Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */
+/* IF IJOB = 0 or TRANS = 'T', DIF is not touched. */
+
+/* SCALE (output) DOUBLE PRECISION */
+/* On exit SCALE is the scaling factor in (1) or (3). */
+/* If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */
+/* to a slightly perturbed system but the input matrices A, B, D */
+/* and E have not been changed. If SCALE = 0, C and F hold the */
+/* solutions R and L, respectively, to the homogeneous system */
+/* with C = F = 0. Normally, SCALE = 1. */
+
+/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK > = 1. */
+/* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* IWORK (workspace) INTEGER array, dimension (M+N+6) */
+
+/* INFO (output) INTEGER */
+/* =0: successful exit */
+/* <0: If INFO = -i, the i-th argument had an illegal value. */
+/* >0: (A, D) and (B, E) have common or close eigenvalues. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
+/* for Solving the Generalized Sylvester Equation and Estimating the */
+/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
+/* Department of Computing Science, Umea University, S-901 87 Umea, */
+/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
+/* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
+/* No 1, 1996. */
+
+/* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */
+/* Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */
+/* Appl., 15(4):1045-1060, 1994 */
+
+/* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */
+/* Condition Estimators for Solving the Generalized Sylvester */
+/* Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */
+/* July 1989, pp 745-751. */
+
+/* ===================================================================== */
+/* Replaced various illegal calls to DCOPY by calls to DLASET. */
+/* Sven Hammarling, 1/5/02. */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test input parameters */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ d_dim1 = *ldd;
+ d_offset = 1 + d_dim1;
+ d__ -= d_offset;
+ e_dim1 = *lde;
+ e_offset = 1 + e_dim1;
+ e -= e_offset;
+ f_dim1 = *ldf;
+ f_offset = 1 + f_dim1;
+ f -= f_offset;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ notran = lsame_(trans, "N");
+ lquery = *lwork == -1;
+
+ if (! notran && ! lsame_(trans, "T")) {
+ *info = -1;
+ } else if (notran) {
+ if (*ijob < 0 || *ijob > 4) {
+ *info = -2;
+ }
+ }
+ if (*info == 0) {
+ if (*m <= 0) {
+ *info = -3;
+ } else if (*n <= 0) {
+ *info = -4;
+ } else if (*lda < max(1,*m)) {
+ *info = -6;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if (*ldd < max(1,*m)) {
+ *info = -12;
+ } else if (*lde < max(1,*n)) {
+ *info = -14;
+ } else if (*ldf < max(1,*m)) {
+ *info = -16;
+ }
+ }
+
+ if (*info == 0) {
+ if (notran) {
+ if (*ijob == 1 || *ijob == 2) {
+/* Computing MAX */
+ i__1 = 1, i__2 = (*m << 1) * *n;
+ lwmin = max(i__1,i__2);
+ } else {
+ lwmin = 1;
+ }
+ } else {
+ lwmin = 1;
+ }
+ work[1] = (doublereal) lwmin;
+
+ if (*lwork < lwmin && ! lquery) {
+ *info = -20;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DTGSYL", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ *scale = 1.;
+ if (notran) {
+ if (*ijob != 0) {
+ *dif = 0.;
+ }
+ }
+ return 0;
+ }
+
+/* Determine optimal block sizes MB and NB */
+
+ mb = ilaenv_(&c__2, "DTGSYL", trans, m, n, &c_n1, &c_n1);
+ nb = ilaenv_(&c__5, "DTGSYL", trans, m, n, &c_n1, &c_n1);
+
+ isolve = 1;
+ ifunc = 0;
+ if (notran) {
+ if (*ijob >= 3) {
+ ifunc = *ijob - 2;
+ dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc)
+ ;
+ dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
+ } else if (*ijob >= 1) {
+ isolve = 2;
+ }
+ }
+
+ if (mb <= 1 && nb <= 1 || mb >= *m && nb >= *n) {
+
+ i__1 = isolve;
+ for (iround = 1; iround <= i__1; ++iround) {
+
+/* Use unblocked Level 2 solver */
+
+ dscale = 0.;
+ dsum = 1.;
+ pq = 0;
+ dtgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb,
+ &c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset],
+ lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1],
+ &pq, info);
+ if (dscale != 0.) {
+ if (*ijob == 1 || *ijob == 3) {
+ *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
+ sqrt(dsum));
+ } else {
+ *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
+ }
+ }
+
+ if (isolve == 2 && iround == 1) {
+ if (notran) {
+ ifunc = *ijob;
+ }
+ scale2 = *scale;
+ dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
+ dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
+ dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
+ dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
+ } else if (isolve == 2 && iround == 2) {
+ dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
+ dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
+ *scale = scale2;
+ }
+/* L30: */
+ }
+
+ return 0;
+ }
+
+/* Determine block structure of A */
+
+ p = 0;
+ i__ = 1;
+L40:
+ if (i__ > *m) {
+ goto L50;
+ }
+ ++p;
+ iwork[p] = i__;
+ i__ += mb;
+ if (i__ >= *m) {
+ goto L50;
+ }
+ if (a[i__ + (i__ - 1) * a_dim1] != 0.) {
+ ++i__;
+ }
+ goto L40;
+L50:
+
+ iwork[p + 1] = *m + 1;
+ if (iwork[p] == iwork[p + 1]) {
+ --p;
+ }
+
+/* Determine block structure of B */
+
+ q = p + 1;
+ j = 1;
+L60:
+ if (j > *n) {
+ goto L70;
+ }
+ ++q;
+ iwork[q] = j;
+ j += nb;
+ if (j >= *n) {
+ goto L70;
+ }
+ if (b[j + (j - 1) * b_dim1] != 0.) {
+ ++j;
+ }
+ goto L60;
+L70:
+
+ iwork[q + 1] = *n + 1;
+ if (iwork[q] == iwork[q + 1]) {
+ --q;
+ }
+
+ if (notran) {
+
+ i__1 = isolve;
+ for (iround = 1; iround <= i__1; ++iround) {
+
+/* Solve (I, J)-subsystem */
+/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
+/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
+/* for I = P, P - 1,..., 1; J = 1, 2,..., Q */
+
+ dscale = 0.;
+ dsum = 1.;
+ pq = 0;
+ *scale = 1.;
+ i__2 = q;
+ for (j = p + 2; j <= i__2; ++j) {
+ js = iwork[j];
+ je = iwork[j + 1] - 1;
+ nb = je - js + 1;
+ for (i__ = p; i__ >= 1; --i__) {
+ is = iwork[i__];
+ ie = iwork[i__ + 1] - 1;
+ mb = ie - is + 1;
+ ppqq = 0;
+ dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1],
+ lda, &b[js + js * b_dim1], ldb, &c__[is + js *
+ c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js
+ + js * e_dim1], lde, &f[is + js * f_dim1], ldf, &
+ scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, &
+ linfo);
+ if (linfo > 0) {
+ *info = linfo;
+ }
+
+ pq += ppqq;
+ if (scaloc != 1.) {
+ i__3 = js - 1;
+ for (k = 1; k <= i__3; ++k) {
+ dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L80: */
+ }
+ i__3 = je;
+ for (k = js; k <= i__3; ++k) {
+ i__4 = is - 1;
+ dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &
+ c__1);
+ i__4 = is - 1;
+ dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L90: */
+ }
+ i__3 = je;
+ for (k = js; k <= i__3; ++k) {
+ i__4 = *m - ie;
+ dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1],
+ &c__1);
+ i__4 = *m - ie;
+ dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &
+ c__1);
+/* L100: */
+ }
+ i__3 = *n;
+ for (k = je + 1; k <= i__3; ++k) {
+ dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L110: */
+ }
+ *scale *= scaloc;
+ }
+
+/* Substitute R(I, J) and L(I, J) into remaining */
+/* equation. */
+
+ if (i__ > 1) {
+ i__3 = is - 1;
+ dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &a[is *
+ a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc,
+ &c_b52, &c__[js * c_dim1 + 1], ldc);
+ i__3 = is - 1;
+ dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &d__[is *
+ d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc,
+ &c_b52, &f[js * f_dim1 + 1], ldf);
+ }
+ if (j < q) {
+ i__3 = *n - je;
+ dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
+ f_dim1], ldf, &b[js + (je + 1) * b_dim1],
+ ldb, &c_b52, &c__[is + (je + 1) * c_dim1],
+ ldc);
+ i__3 = *n - je;
+ dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
+ f_dim1], ldf, &e[js + (je + 1) * e_dim1],
+ lde, &c_b52, &f[is + (je + 1) * f_dim1], ldf);
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ if (dscale != 0.) {
+ if (*ijob == 1 || *ijob == 3) {
+ *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
+ sqrt(dsum));
+ } else {
+ *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
+ }
+ }
+ if (isolve == 2 && iround == 1) {
+ if (notran) {
+ ifunc = *ijob;
+ }
+ scale2 = *scale;
+ dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
+ dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
+ dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
+ dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
+ } else if (isolve == 2 && iround == 2) {
+ dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
+ dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
+ *scale = scale2;
+ }
+/* L150: */
+ }
+
+ } else {
+
+/* Solve transposed (I, J)-subsystem */
+/* A(I, I)' * R(I, J) + D(I, I)' * L(I, J) = C(I, J) */
+/* R(I, J) * B(J, J)' + L(I, J) * E(J, J)' = -F(I, J) */
+/* for I = 1,2,..., P; J = Q, Q-1,..., 1 */
+
+ *scale = 1.;
+ i__1 = p;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ is = iwork[i__];
+ ie = iwork[i__ + 1] - 1;
+ mb = ie - is + 1;
+ i__2 = p + 2;
+ for (j = q; j >= i__2; --j) {
+ js = iwork[j];
+ je = iwork[j + 1] - 1;
+ nb = je - js + 1;
+ dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, &
+ b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc,
+ &d__[is + is * d_dim1], ldd, &e[js + js * e_dim1],
+ lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, &
+ dscale, &iwork[q + 2], &ppqq, &linfo);
+ if (linfo > 0) {
+ *info = linfo;
+ }
+ if (scaloc != 1.) {
+ i__3 = js - 1;
+ for (k = 1; k <= i__3; ++k) {
+ dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L160: */
+ }
+ i__3 = je;
+ for (k = js; k <= i__3; ++k) {
+ i__4 = is - 1;
+ dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ i__4 = is - 1;
+ dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L170: */
+ }
+ i__3 = je;
+ for (k = js; k <= i__3; ++k) {
+ i__4 = *m - ie;
+ dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], &
+ c__1);
+ i__4 = *m - ie;
+ dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1)
+ ;
+/* L180: */
+ }
+ i__3 = *n;
+ for (k = je + 1; k <= i__3; ++k) {
+ dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
+ dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
+/* L190: */
+ }
+ *scale *= scaloc;
+ }
+
+/* Substitute R(I, J) and L(I, J) into remaining equation. */
+
+ if (j > p + 2) {
+ i__3 = js - 1;
+ dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &c__[is + js *
+ c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b52, &
+ f[is + f_dim1], ldf);
+ i__3 = js - 1;
+ dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &f[is + js *
+ f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b52, &
+ f[is + f_dim1], ldf);
+ }
+ if (i__ < p) {
+ i__3 = *m - ie;
+ dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &a[is + (ie + 1)
+ * a_dim1], lda, &c__[is + js * c_dim1], ldc, &
+ c_b52, &c__[ie + 1 + js * c_dim1], ldc);
+ i__3 = *m - ie;
+ dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &d__[is + (ie +
+ 1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, &
+ c_b52, &c__[ie + 1 + js * c_dim1], ldc);
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+
+ }
+
+ work[1] = (doublereal) lwmin;
+
+ return 0;
+
+/* End of DTGSYL */
+
+} /* dtgsyl_ */