diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dtgex2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dtgex2.c')
-rw-r--r-- | contrib/libs/clapack/dtgex2.c | 711 |
1 files changed, 711 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dtgex2.c b/contrib/libs/clapack/dtgex2.c new file mode 100644 index 0000000000..52d2b9f9ae --- /dev/null +++ b/contrib/libs/clapack/dtgex2.c @@ -0,0 +1,711 @@ +/* dtgex2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__4 = 4; +static doublereal c_b5 = 0.; +static integer c__1 = 1; +static integer c__2 = 2; +static doublereal c_b42 = 1.; +static doublereal c_b48 = -1.; +static integer c__0 = 0; + +/* Subroutine */ int dtgex2_(logical *wantq, logical *wantz, integer *n, + doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal * + q, integer *ldq, doublereal *z__, integer *ldz, integer *j1, integer * + n1, integer *n2, doublereal *work, integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, + z_offset, i__1, i__2; + doublereal d__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + doublereal f, g; + integer i__, m; + doublereal s[16] /* was [4][4] */, t[16] /* was [4][4] */, be[2], ai[2] + , ar[2], sa, sb, li[16] /* was [4][4] */, ir[16] /* + was [4][4] */, ss, ws, eps; + logical weak; + doublereal ddum; + integer idum; + doublereal taul[4], dsum; + extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, + doublereal *, integer *, doublereal *, doublereal *); + doublereal taur[4], scpy[16] /* was [4][4] */, tcpy[16] /* + was [4][4] */; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *); + doublereal scale, bqra21, brqa21; + extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, + integer *, doublereal *, doublereal *, integer *, doublereal *, + integer *, doublereal *, doublereal *, integer *); + doublereal licop[16] /* was [4][4] */; + integer linfo; + doublereal ircop[16] /* was [4][4] */, dnorm; + integer iwork[4]; + extern /* Subroutine */ int dlagv2_(doublereal *, integer *, doublereal *, + integer *, doublereal *, doublereal *, doublereal *, doublereal * +, doublereal *, doublereal *, doublereal *), dgeqr2_(integer *, + integer *, doublereal *, integer *, doublereal *, doublereal *, + integer *), dgerq2_(integer *, integer *, doublereal *, integer *, + doublereal *, doublereal *, integer *), dorg2r_(integer *, + integer *, integer *, doublereal *, integer *, doublereal *, + doublereal *, integer *), dorgr2_(integer *, integer *, integer *, + doublereal *, integer *, doublereal *, doublereal *, integer *), + dorm2r_(char *, char *, integer *, integer *, integer *, + doublereal *, integer *, doublereal *, doublereal *, integer *, + doublereal *, integer *), dormr2_(char *, char *, + integer *, integer *, integer *, doublereal *, integer *, + doublereal *, doublereal *, integer *, doublereal *, integer *), dtgsy2_(char *, integer *, integer *, integer *, + doublereal *, integer *, doublereal *, integer *, doublereal *, + integer *, doublereal *, integer *, doublereal *, integer *, + doublereal *, integer *, doublereal *, doublereal *, doublereal *, + integer *, integer *, integer *); + extern doublereal dlamch_(char *); + doublereal dscale; + extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, + doublereal *, integer *, doublereal *, integer *), + dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, + doublereal *), dlaset_(char *, integer *, integer *, doublereal *, + doublereal *, doublereal *, integer *), dlassq_(integer * +, doublereal *, integer *, doublereal *, doublereal *); + logical dtrong; + doublereal thresh, smlnum; + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */ +/* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */ +/* (A, B) by an orthogonal equivalence transformation. */ + +/* (A, B) must be in generalized real Schur canonical form (as returned */ +/* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */ +/* diagonal blocks. B is upper triangular. */ + +/* Optionally, the matrices Q and Z of generalized Schur vectors are */ +/* updated. */ + +/* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */ +/* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */ + + +/* Arguments */ +/* ========= */ + +/* WANTQ (input) LOGICAL */ +/* .TRUE. : update the left transformation matrix Q; */ +/* .FALSE.: do not update Q. */ + +/* WANTZ (input) LOGICAL */ +/* .TRUE. : update the right transformation matrix Z; */ +/* .FALSE.: do not update Z. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N) */ +/* On entry, the matrix A in the pair (A, B). */ +/* On exit, the updated matrix A. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N) */ +/* On entry, the matrix B in the pair (A, B). */ +/* On exit, the updated matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */ +/* On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */ +/* On exit, the updated matrix Q. */ +/* Not referenced if WANTQ = .FALSE.. */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. LDQ >= 1. */ +/* If WANTQ = .TRUE., LDQ >= N. */ + +/* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */ +/* On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */ +/* On exit, the updated matrix Z. */ +/* Not referenced if WANTZ = .FALSE.. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1. */ +/* If WANTZ = .TRUE., LDZ >= N. */ + +/* J1 (input) INTEGER */ +/* The index to the first block (A11, B11). 1 <= J1 <= N. */ + +/* N1 (input) INTEGER */ +/* The order of the first block (A11, B11). N1 = 0, 1 or 2. */ + +/* N2 (input) INTEGER */ +/* The order of the second block (A22, B22). N2 = 0, 1 or 2. */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)). */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. */ +/* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */ + +/* INFO (output) INTEGER */ +/* =0: Successful exit */ +/* >0: If INFO = 1, the transformed matrix (A, B) would be */ +/* too far from generalized Schur form; the blocks are */ +/* not swapped and (A, B) and (Q, Z) are unchanged. */ +/* The problem of swapping is too ill-conditioned. */ +/* <0: If INFO = -16: LWORK is too small. Appropriate value */ +/* for LWORK is returned in WORK(1). */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* In the current code both weak and strong stability tests are */ +/* performed. The user can omit the strong stability test by changing */ +/* the internal logical parameter WANDS to .FALSE.. See ref. [2] for */ +/* details. */ + +/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */ +/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */ +/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */ +/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */ + +/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */ +/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */ +/* Estimation: Theory, Algorithms and Software, */ +/* Report UMINF - 94.04, Department of Computing Science, Umea */ +/* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */ +/* Note 87. To appear in Numerical Algorithms, 1996. */ + +/* ===================================================================== */ +/* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO */ +/* loops. Sven Hammarling, 1/5/02. */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + + /* Function Body */ + *info = 0; + +/* Quick return if possible */ + + if (*n <= 1 || *n1 <= 0 || *n2 <= 0) { + return 0; + } + if (*n1 > *n || *j1 + *n1 > *n) { + return 0; + } + m = *n1 + *n2; +/* Computing MAX */ + i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1; + if (*lwork < max(i__1,i__2)) { + *info = -16; +/* Computing MAX */ + i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1; + work[1] = (doublereal) max(i__1,i__2); + return 0; + } + + weak = FALSE_; + dtrong = FALSE_; + +/* Make a local copy of selected block */ + + dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4); + dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4); + dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4); + dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4); + +/* Compute threshold for testing acceptance of swapping. */ + + eps = dlamch_("P"); + smlnum = dlamch_("S") / eps; + dscale = 0.; + dsum = 1.; + dlacpy_("Full", &m, &m, s, &c__4, &work[1], &m); + i__1 = m * m; + dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum); + dlacpy_("Full", &m, &m, t, &c__4, &work[1], &m); + i__1 = m * m; + dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum); + dnorm = dscale * sqrt(dsum); +/* Computing MAX */ + d__1 = eps * 10. * dnorm; + thresh = max(d__1,smlnum); + + if (m == 2) { + +/* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */ + +/* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */ +/* using Givens rotations and perform the swap tentatively. */ + + f = s[5] * t[0] - t[5] * s[0]; + g = s[5] * t[4] - t[5] * s[4]; + sb = abs(t[5]); + sa = abs(s[5]); + dlartg_(&f, &g, &ir[4], ir, &ddum); + ir[1] = -ir[4]; + ir[5] = ir[0]; + drot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]); + drot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]); + if (sa >= sb) { + dlartg_(s, &s[1], li, &li[1], &ddum); + } else { + dlartg_(t, &t[1], li, &li[1], &ddum); + } + drot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]); + drot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]); + li[5] = li[0]; + li[4] = -li[1]; + +/* Weak stability test: */ +/* |S21| + |T21| <= O(EPS * F-norm((S, T))) */ + + ws = abs(s[1]) + abs(t[1]); + weak = ws <= thresh; + if (! weak) { + goto L70; + } + + if (TRUE_) { + +/* Strong stability test: */ +/* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B))) */ + + dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m + + 1], &m); + dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, & + work[1], &m); + dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, & + c_b42, &work[m * m + 1], &m); + dscale = 0.; + dsum = 1.; + i__1 = m * m; + dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum); + + dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m + + 1], &m); + dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, & + work[1], &m); + dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, & + c_b42, &work[m * m + 1], &m); + i__1 = m * m; + dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum); + ss = dscale * sqrt(dsum); + dtrong = ss <= thresh; + if (! dtrong) { + goto L70; + } + } + +/* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */ +/* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */ + + i__1 = *j1 + 1; + drot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], + &c__1, ir, &ir[1]); + i__1 = *j1 + 1; + drot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], + &c__1, ir, &ir[1]); + i__1 = *n - *j1 + 1; + drot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], + lda, li, &li[1]); + i__1 = *n - *j1 + 1; + drot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], + ldb, li, &li[1]); + +/* Set N1-by-N2 (2,1) - blocks to ZERO. */ + + a[*j1 + 1 + *j1 * a_dim1] = 0.; + b[*j1 + 1 + *j1 * b_dim1] = 0.; + +/* Accumulate transformations into Q and Z if requested. */ + + if (*wantz) { + drot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + + 1], &c__1, ir, &ir[1]); + } + if (*wantq) { + drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], + &c__1, li, &li[1]); + } + +/* Exit with INFO = 0 if swap was successfully performed. */ + + return 0; + + } else { + +/* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */ +/* and 2-by-2 blocks. */ + +/* Solve the generalized Sylvester equation */ +/* S11 * R - L * S22 = SCALE * S12 */ +/* T11 * R - L * T22 = SCALE * T12 */ +/* for R and L. Solutions in LI and IR. */ + + dlacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4); + dlacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + ( + *n1 + 1 << 2) - 5], &c__4); + dtgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5] +, &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, & + t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, & + dsum, &dscale, iwork, &idum, &linfo); + +/* Compute orthogonal matrix QL: */ + +/* QL' * LI = [ TL ] */ +/* [ 0 ] */ +/* where */ +/* LI = [ -L ] */ +/* [ SCALE * identity(N2) ] */ + + i__1 = *n2; + for (i__ = 1; i__ <= i__1; ++i__) { + dscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1); + li[*n1 + i__ + (i__ << 2) - 5] = scale; +/* L10: */ + } + dgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo); + if (linfo != 0) { + goto L70; + } + dorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo); + if (linfo != 0) { + goto L70; + } + +/* Compute orthogonal matrix RQ: */ + +/* IR * RQ' = [ 0 TR], */ + +/* where IR = [ SCALE * identity(N1), R ] */ + + i__1 = *n1; + for (i__ = 1; i__ <= i__1; ++i__) { + ir[*n2 + i__ + (i__ << 2) - 5] = scale; +/* L20: */ + } + dgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo); + if (linfo != 0) { + goto L70; + } + dorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo); + if (linfo != 0) { + goto L70; + } + +/* Perform the swapping tentatively: */ + + dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, & + work[1], &m); + dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5, + s, &c__4); + dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, & + work[1], &m); + dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5, + t, &c__4); + dlacpy_("F", &m, &m, s, &c__4, scpy, &c__4); + dlacpy_("F", &m, &m, t, &c__4, tcpy, &c__4); + dlacpy_("F", &m, &m, ir, &c__4, ircop, &c__4); + dlacpy_("F", &m, &m, li, &c__4, licop, &c__4); + +/* Triangularize the B-part by an RQ factorization. */ +/* Apply transformation (from left) to A-part, giving S. */ + + dgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo); + if (linfo != 0) { + goto L70; + } + dormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], & + linfo); + if (linfo != 0) { + goto L70; + } + dormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], & + linfo); + if (linfo != 0) { + goto L70; + } + +/* Compute F-norm(S21) in BRQA21. (T21 is 0.) */ + + dscale = 0.; + dsum = 1.; + i__1 = *n2; + for (i__ = 1; i__ <= i__1; ++i__) { + dlassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum); +/* L30: */ + } + brqa21 = dscale * sqrt(dsum); + +/* Triangularize the B-part by a QR factorization. */ +/* Apply transformation (from right) to A-part, giving S. */ + + dgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo); + if (linfo != 0) { + goto L70; + } + dorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1] +, info); + dorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[ + 1], info); + if (linfo != 0) { + goto L70; + } + +/* Compute F-norm(S21) in BQRA21. (T21 is 0.) */ + + dscale = 0.; + dsum = 1.; + i__1 = *n2; + for (i__ = 1; i__ <= i__1; ++i__) { + dlassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, & + dsum); +/* L40: */ + } + bqra21 = dscale * sqrt(dsum); + +/* Decide which method to use. */ +/* Weak stability test: */ +/* F-norm(S21) <= O(EPS * F-norm((S, T))) */ + + if (bqra21 <= brqa21 && bqra21 <= thresh) { + dlacpy_("F", &m, &m, scpy, &c__4, s, &c__4); + dlacpy_("F", &m, &m, tcpy, &c__4, t, &c__4); + dlacpy_("F", &m, &m, ircop, &c__4, ir, &c__4); + dlacpy_("F", &m, &m, licop, &c__4, li, &c__4); + } else if (brqa21 >= thresh) { + goto L70; + } + +/* Set lower triangle of B-part to zero */ + + i__1 = m - 1; + i__2 = m - 1; + dlaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4); + + if (TRUE_) { + +/* Strong stability test: */ +/* F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B))) */ + + dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m + + 1], &m); + dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, & + work[1], &m); + dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, & + c_b42, &work[m * m + 1], &m); + dscale = 0.; + dsum = 1.; + i__1 = m * m; + dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum); + + dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m + + 1], &m); + dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, & + work[1], &m); + dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, & + c_b42, &work[m * m + 1], &m); + i__1 = m * m; + dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum); + ss = dscale * sqrt(dsum); + dtrong = ss <= thresh; + if (! dtrong) { + goto L70; + } + + } + +/* If the swap is accepted ("weakly" and "strongly"), apply the */ +/* transformations and set N1-by-N2 (2,1)-block to zero. */ + + dlaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4); + +/* copy back M-by-M diagonal block starting at index J1 of (A, B) */ + + dlacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda) + ; + dlacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb) + ; + dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4); + +/* Standardize existing 2-by-2 blocks. */ + + i__1 = m * m; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.; +/* L50: */ + } + work[1] = 1.; + t[0] = 1.; + idum = *lwork - m * m - 2; + if (*n2 > 1) { + dlagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb, + ar, ai, be, &work[1], &work[2], t, &t[1]); + work[m + 1] = -work[2]; + work[m + 2] = work[1]; + t[*n2 + (*n2 << 2) - 5] = t[0]; + t[4] = -t[1]; + } + work[m * m] = 1.; + t[m + (m << 2) - 5] = 1.; + + if (*n1 > 1) { + dlagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 + + (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1], + &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[* + n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]); + work[m * m] = work[*n2 * m + *n2 + 1]; + work[m * m - 1] = -work[*n2 * m + *n2 + 2]; + t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5]; + t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5]; + } + dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + * + n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2); + dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) * + a_dim1], lda); + dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + * + n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2); + dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) * + b_dim1], ldb); + dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, & + work[m * m + 1], &m); + dlacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4); + dgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1], + lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1], + n2); + dlacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1], + lda); + dgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1], + ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1], + n2); + dlacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1], + ldb); + dgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, & + work[1], &m); + dlacpy_("Full", &m, &m, &work[1], &m, ir, &c__4); + +/* Accumulate transformations into Q and Z if requested. */ + + if (*wantq) { + dgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li, + &c__4, &c_b5, &work[1], n); + dlacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq); + + } + + if (*wantz) { + dgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz, + ir, &c__4, &c_b5, &work[1], n); + dlacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz); + + } + +/* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */ +/* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */ + + i__ = *j1 + m; + if (i__ <= *n) { + i__1 = *n - i__ + 1; + dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ * + a_dim1], lda, &c_b5, &work[1], &m); + i__1 = *n - i__ + 1; + dlacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1], + lda); + i__1 = *n - i__ + 1; + dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ * + b_dim1], lda, &c_b5, &work[1], &m); + i__1 = *n - i__ + 1; + dlacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1], + ldb); + } + i__ = *j1 - 1; + if (i__ > 0) { + dgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda, + ir, &c__4, &c_b5, &work[1], &i__); + dlacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1], + lda); + dgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb, + ir, &c__4, &c_b5, &work[1], &i__); + dlacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1], + ldb); + } + +/* Exit with INFO = 0 if swap was successfully performed. */ + + return 0; + + } + +/* Exit with INFO = 1 if swap was rejected. */ + +L70: + + *info = 1; + return 0; + +/* End of DTGEX2 */ + +} /* dtgex2_ */ |