aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dtgex2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dtgex2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dtgex2.c')
-rw-r--r--contrib/libs/clapack/dtgex2.c711
1 files changed, 711 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dtgex2.c b/contrib/libs/clapack/dtgex2.c
new file mode 100644
index 0000000000..52d2b9f9ae
--- /dev/null
+++ b/contrib/libs/clapack/dtgex2.c
@@ -0,0 +1,711 @@
+/* dtgex2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__4 = 4;
+static doublereal c_b5 = 0.;
+static integer c__1 = 1;
+static integer c__2 = 2;
+static doublereal c_b42 = 1.;
+static doublereal c_b48 = -1.;
+static integer c__0 = 0;
+
+/* Subroutine */ int dtgex2_(logical *wantq, logical *wantz, integer *n,
+ doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
+ q, integer *ldq, doublereal *z__, integer *ldz, integer *j1, integer *
+ n1, integer *n2, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
+ z_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ doublereal f, g;
+ integer i__, m;
+ doublereal s[16] /* was [4][4] */, t[16] /* was [4][4] */, be[2], ai[2]
+ , ar[2], sa, sb, li[16] /* was [4][4] */, ir[16] /*
+ was [4][4] */, ss, ws, eps;
+ logical weak;
+ doublereal ddum;
+ integer idum;
+ doublereal taul[4], dsum;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ doublereal taur[4], scpy[16] /* was [4][4] */, tcpy[16] /*
+ was [4][4] */;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ doublereal scale, bqra21, brqa21;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ doublereal licop[16] /* was [4][4] */;
+ integer linfo;
+ doublereal ircop[16] /* was [4][4] */, dnorm;
+ integer iwork[4];
+ extern /* Subroutine */ int dlagv2_(doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *
+, doublereal *, doublereal *, doublereal *), dgeqr2_(integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *), dgerq2_(integer *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *), dorg2r_(integer *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *), dorgr2_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *),
+ dorm2r_(char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *), dormr2_(char *, char *,
+ integer *, integer *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *), dtgsy2_(char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, integer *, integer *);
+ extern doublereal dlamch_(char *);
+ doublereal dscale;
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *),
+ dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *), dlassq_(integer *
+, doublereal *, integer *, doublereal *, doublereal *);
+ logical dtrong;
+ doublereal thresh, smlnum;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
+/* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
+/* (A, B) by an orthogonal equivalence transformation. */
+
+/* (A, B) must be in generalized real Schur canonical form (as returned */
+/* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
+/* diagonal blocks. B is upper triangular. */
+
+/* Optionally, the matrices Q and Z of generalized Schur vectors are */
+/* updated. */
+
+/* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */
+/* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */
+
+
+/* Arguments */
+/* ========= */
+
+/* WANTQ (input) LOGICAL */
+/* .TRUE. : update the left transformation matrix Q; */
+/* .FALSE.: do not update Q. */
+
+/* WANTZ (input) LOGICAL */
+/* .TRUE. : update the right transformation matrix Z; */
+/* .FALSE.: do not update Z. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N) */
+/* On entry, the matrix A in the pair (A, B). */
+/* On exit, the updated matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N) */
+/* On entry, the matrix B in the pair (A, B). */
+/* On exit, the updated matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
+/* On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
+/* On exit, the updated matrix Q. */
+/* Not referenced if WANTQ = .FALSE.. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. LDQ >= 1. */
+/* If WANTQ = .TRUE., LDQ >= N. */
+
+/* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
+/* On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
+/* On exit, the updated matrix Z. */
+/* Not referenced if WANTZ = .FALSE.. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1. */
+/* If WANTZ = .TRUE., LDZ >= N. */
+
+/* J1 (input) INTEGER */
+/* The index to the first block (A11, B11). 1 <= J1 <= N. */
+
+/* N1 (input) INTEGER */
+/* The order of the first block (A11, B11). N1 = 0, 1 or 2. */
+
+/* N2 (input) INTEGER */
+/* The order of the second block (A22, B22). N2 = 0, 1 or 2. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)). */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
+
+/* INFO (output) INTEGER */
+/* =0: Successful exit */
+/* >0: If INFO = 1, the transformed matrix (A, B) would be */
+/* too far from generalized Schur form; the blocks are */
+/* not swapped and (A, B) and (Q, Z) are unchanged. */
+/* The problem of swapping is too ill-conditioned. */
+/* <0: If INFO = -16: LWORK is too small. Appropriate value */
+/* for LWORK is returned in WORK(1). */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* In the current code both weak and strong stability tests are */
+/* performed. The user can omit the strong stability test by changing */
+/* the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
+/* details. */
+
+/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
+/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
+/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
+/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
+
+/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
+/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
+/* Estimation: Theory, Algorithms and Software, */
+/* Report UMINF - 94.04, Department of Computing Science, Umea */
+/* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
+/* Note 87. To appear in Numerical Algorithms, 1996. */
+
+/* ===================================================================== */
+/* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO */
+/* loops. Sven Hammarling, 1/5/02. */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+/* Quick return if possible */
+
+ if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
+ return 0;
+ }
+ if (*n1 > *n || *j1 + *n1 > *n) {
+ return 0;
+ }
+ m = *n1 + *n2;
+/* Computing MAX */
+ i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1;
+ if (*lwork < max(i__1,i__2)) {
+ *info = -16;
+/* Computing MAX */
+ i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1;
+ work[1] = (doublereal) max(i__1,i__2);
+ return 0;
+ }
+
+ weak = FALSE_;
+ dtrong = FALSE_;
+
+/* Make a local copy of selected block */
+
+ dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
+ dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
+ dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
+ dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
+
+/* Compute threshold for testing acceptance of swapping. */
+
+ eps = dlamch_("P");
+ smlnum = dlamch_("S") / eps;
+ dscale = 0.;
+ dsum = 1.;
+ dlacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
+ i__1 = m * m;
+ dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
+ dlacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
+ i__1 = m * m;
+ dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
+ dnorm = dscale * sqrt(dsum);
+/* Computing MAX */
+ d__1 = eps * 10. * dnorm;
+ thresh = max(d__1,smlnum);
+
+ if (m == 2) {
+
+/* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
+
+/* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
+/* using Givens rotations and perform the swap tentatively. */
+
+ f = s[5] * t[0] - t[5] * s[0];
+ g = s[5] * t[4] - t[5] * s[4];
+ sb = abs(t[5]);
+ sa = abs(s[5]);
+ dlartg_(&f, &g, &ir[4], ir, &ddum);
+ ir[1] = -ir[4];
+ ir[5] = ir[0];
+ drot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
+ drot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
+ if (sa >= sb) {
+ dlartg_(s, &s[1], li, &li[1], &ddum);
+ } else {
+ dlartg_(t, &t[1], li, &li[1], &ddum);
+ }
+ drot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
+ drot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
+ li[5] = li[0];
+ li[4] = -li[1];
+
+/* Weak stability test: */
+/* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
+
+ ws = abs(s[1]) + abs(t[1]);
+ weak = ws <= thresh;
+ if (! weak) {
+ goto L70;
+ }
+
+ if (TRUE_) {
+
+/* Strong stability test: */
+/* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B))) */
+
+ dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
+ + 1], &m);
+ dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
+ work[1], &m);
+ dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
+ c_b42, &work[m * m + 1], &m);
+ dscale = 0.;
+ dsum = 1.;
+ i__1 = m * m;
+ dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
+
+ dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
+ + 1], &m);
+ dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
+ work[1], &m);
+ dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
+ c_b42, &work[m * m + 1], &m);
+ i__1 = m * m;
+ dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
+ ss = dscale * sqrt(dsum);
+ dtrong = ss <= thresh;
+ if (! dtrong) {
+ goto L70;
+ }
+ }
+
+/* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
+/* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
+
+ i__1 = *j1 + 1;
+ drot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
+ &c__1, ir, &ir[1]);
+ i__1 = *j1 + 1;
+ drot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
+ &c__1, ir, &ir[1]);
+ i__1 = *n - *j1 + 1;
+ drot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
+ lda, li, &li[1]);
+ i__1 = *n - *j1 + 1;
+ drot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
+ ldb, li, &li[1]);
+
+/* Set N1-by-N2 (2,1) - blocks to ZERO. */
+
+ a[*j1 + 1 + *j1 * a_dim1] = 0.;
+ b[*j1 + 1 + *j1 * b_dim1] = 0.;
+
+/* Accumulate transformations into Q and Z if requested. */
+
+ if (*wantz) {
+ drot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
+ 1], &c__1, ir, &ir[1]);
+ }
+ if (*wantq) {
+ drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
+ &c__1, li, &li[1]);
+ }
+
+/* Exit with INFO = 0 if swap was successfully performed. */
+
+ return 0;
+
+ } else {
+
+/* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
+/* and 2-by-2 blocks. */
+
+/* Solve the generalized Sylvester equation */
+/* S11 * R - L * S22 = SCALE * S12 */
+/* T11 * R - L * T22 = SCALE * T12 */
+/* for R and L. Solutions in LI and IR. */
+
+ dlacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
+ dlacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
+ *n1 + 1 << 2) - 5], &c__4);
+ dtgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
+, &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
+ t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
+ dsum, &dscale, iwork, &idum, &linfo);
+
+/* Compute orthogonal matrix QL: */
+
+/* QL' * LI = [ TL ] */
+/* [ 0 ] */
+/* where */
+/* LI = [ -L ] */
+/* [ SCALE * identity(N2) ] */
+
+ i__1 = *n2;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
+ li[*n1 + i__ + (i__ << 2) - 5] = scale;
+/* L10: */
+ }
+ dgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+ dorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+
+/* Compute orthogonal matrix RQ: */
+
+/* IR * RQ' = [ 0 TR], */
+
+/* where IR = [ SCALE * identity(N1), R ] */
+
+ i__1 = *n1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ ir[*n2 + i__ + (i__ << 2) - 5] = scale;
+/* L20: */
+ }
+ dgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+ dorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+
+/* Perform the swapping tentatively: */
+
+ dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
+ work[1], &m);
+ dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
+ s, &c__4);
+ dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
+ work[1], &m);
+ dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
+ t, &c__4);
+ dlacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
+ dlacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
+ dlacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
+ dlacpy_("F", &m, &m, li, &c__4, licop, &c__4);
+
+/* Triangularize the B-part by an RQ factorization. */
+/* Apply transformation (from left) to A-part, giving S. */
+
+ dgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+ dormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
+ linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+ dormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
+ linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+
+/* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
+
+ dscale = 0.;
+ dsum = 1.;
+ i__1 = *n2;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
+/* L30: */
+ }
+ brqa21 = dscale * sqrt(dsum);
+
+/* Triangularize the B-part by a QR factorization. */
+/* Apply transformation (from right) to A-part, giving S. */
+
+ dgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
+ if (linfo != 0) {
+ goto L70;
+ }
+ dorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
+, info);
+ dorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
+ 1], info);
+ if (linfo != 0) {
+ goto L70;
+ }
+
+/* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
+
+ dscale = 0.;
+ dsum = 1.;
+ i__1 = *n2;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
+ dsum);
+/* L40: */
+ }
+ bqra21 = dscale * sqrt(dsum);
+
+/* Decide which method to use. */
+/* Weak stability test: */
+/* F-norm(S21) <= O(EPS * F-norm((S, T))) */
+
+ if (bqra21 <= brqa21 && bqra21 <= thresh) {
+ dlacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
+ dlacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
+ dlacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
+ dlacpy_("F", &m, &m, licop, &c__4, li, &c__4);
+ } else if (brqa21 >= thresh) {
+ goto L70;
+ }
+
+/* Set lower triangle of B-part to zero */
+
+ i__1 = m - 1;
+ i__2 = m - 1;
+ dlaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
+
+ if (TRUE_) {
+
+/* Strong stability test: */
+/* F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B))) */
+
+ dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
+ + 1], &m);
+ dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
+ work[1], &m);
+ dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
+ c_b42, &work[m * m + 1], &m);
+ dscale = 0.;
+ dsum = 1.;
+ i__1 = m * m;
+ dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
+
+ dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
+ + 1], &m);
+ dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
+ work[1], &m);
+ dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
+ c_b42, &work[m * m + 1], &m);
+ i__1 = m * m;
+ dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
+ ss = dscale * sqrt(dsum);
+ dtrong = ss <= thresh;
+ if (! dtrong) {
+ goto L70;
+ }
+
+ }
+
+/* If the swap is accepted ("weakly" and "strongly"), apply the */
+/* transformations and set N1-by-N2 (2,1)-block to zero. */
+
+ dlaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
+
+/* copy back M-by-M diagonal block starting at index J1 of (A, B) */
+
+ dlacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
+ ;
+ dlacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
+ ;
+ dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
+
+/* Standardize existing 2-by-2 blocks. */
+
+ i__1 = m * m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.;
+/* L50: */
+ }
+ work[1] = 1.;
+ t[0] = 1.;
+ idum = *lwork - m * m - 2;
+ if (*n2 > 1) {
+ dlagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
+ ar, ai, be, &work[1], &work[2], t, &t[1]);
+ work[m + 1] = -work[2];
+ work[m + 2] = work[1];
+ t[*n2 + (*n2 << 2) - 5] = t[0];
+ t[4] = -t[1];
+ }
+ work[m * m] = 1.;
+ t[m + (m << 2) - 5] = 1.;
+
+ if (*n1 > 1) {
+ dlagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
+ (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
+ &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
+ n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
+ work[m * m] = work[*n2 * m + *n2 + 1];
+ work[m * m - 1] = -work[*n2 * m + *n2 + 2];
+ t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
+ t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
+ }
+ dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
+ n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
+ dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
+ a_dim1], lda);
+ dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
+ n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
+ dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
+ b_dim1], ldb);
+ dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
+ work[m * m + 1], &m);
+ dlacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
+ dgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
+ lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
+ n2);
+ dlacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
+ lda);
+ dgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
+ ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
+ n2);
+ dlacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
+ ldb);
+ dgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
+ work[1], &m);
+ dlacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
+
+/* Accumulate transformations into Q and Z if requested. */
+
+ if (*wantq) {
+ dgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
+ &c__4, &c_b5, &work[1], n);
+ dlacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
+
+ }
+
+ if (*wantz) {
+ dgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
+ ir, &c__4, &c_b5, &work[1], n);
+ dlacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
+
+ }
+
+/* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
+/* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
+
+ i__ = *j1 + m;
+ if (i__ <= *n) {
+ i__1 = *n - i__ + 1;
+ dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
+ a_dim1], lda, &c_b5, &work[1], &m);
+ i__1 = *n - i__ + 1;
+ dlacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
+ lda);
+ i__1 = *n - i__ + 1;
+ dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
+ b_dim1], lda, &c_b5, &work[1], &m);
+ i__1 = *n - i__ + 1;
+ dlacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
+ ldb);
+ }
+ i__ = *j1 - 1;
+ if (i__ > 0) {
+ dgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
+ ir, &c__4, &c_b5, &work[1], &i__);
+ dlacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
+ lda);
+ dgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
+ ir, &c__4, &c_b5, &work[1], &i__);
+ dlacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
+ ldb);
+ }
+
+/* Exit with INFO = 0 if swap was successfully performed. */
+
+ return 0;
+
+ }
+
+/* Exit with INFO = 1 if swap was rejected. */
+
+L70:
+
+ *info = 1;
+ return 0;
+
+/* End of DTGEX2 */
+
+} /* dtgex2_ */