diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsytrd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsytrd.c')
-rw-r--r-- | contrib/libs/clapack/dsytrd.c | 360 |
1 files changed, 360 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsytrd.c b/contrib/libs/clapack/dsytrd.c new file mode 100644 index 0000000000..f0f9ded060 --- /dev/null +++ b/contrib/libs/clapack/dsytrd.c @@ -0,0 +1,360 @@ +/* dsytrd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__3 = 3; +static integer c__2 = 2; +static doublereal c_b22 = -1.; +static doublereal c_b23 = 1.; + +/* Subroutine */ int dsytrd_(char *uplo, integer *n, doublereal *a, integer * + lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal * + work, integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + + /* Local variables */ + integer i__, j, nb, kk, nx, iws; + extern logical lsame_(char *, char *); + integer nbmin, iinfo; + logical upper; + extern /* Subroutine */ int dsytd2_(char *, integer *, doublereal *, + integer *, doublereal *, doublereal *, doublereal *, integer *), dsyr2k_(char *, char *, integer *, integer *, doublereal + *, doublereal *, integer *, doublereal *, integer *, doublereal *, + doublereal *, integer *), dlatrd_(char *, + integer *, integer *, doublereal *, integer *, doublereal *, + doublereal *, doublereal *, integer *), xerbla_(char *, + integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + integer ldwork, lwkopt; + logical lquery; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DSYTRD reduces a real symmetric matrix A to real symmetric */ +/* tridiagonal form T by an orthogonal similarity transformation: */ +/* Q**T * A * Q = T. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ +/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ +/* N-by-N upper triangular part of A contains the upper */ +/* triangular part of the matrix A, and the strictly lower */ +/* triangular part of A is not referenced. If UPLO = 'L', the */ +/* leading N-by-N lower triangular part of A contains the lower */ +/* triangular part of the matrix A, and the strictly upper */ +/* triangular part of A is not referenced. */ +/* On exit, if UPLO = 'U', the diagonal and first superdiagonal */ +/* of A are overwritten by the corresponding elements of the */ +/* tridiagonal matrix T, and the elements above the first */ +/* superdiagonal, with the array TAU, represent the orthogonal */ +/* matrix Q as a product of elementary reflectors; if UPLO */ +/* = 'L', the diagonal and first subdiagonal of A are over- */ +/* written by the corresponding elements of the tridiagonal */ +/* matrix T, and the elements below the first subdiagonal, with */ +/* the array TAU, represent the orthogonal matrix Q as a product */ +/* of elementary reflectors. See Further Details. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* D (output) DOUBLE PRECISION array, dimension (N) */ +/* The diagonal elements of the tridiagonal matrix T: */ +/* D(i) = A(i,i). */ + +/* E (output) DOUBLE PRECISION array, dimension (N-1) */ +/* The off-diagonal elements of the tridiagonal matrix T: */ +/* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */ + +/* TAU (output) DOUBLE PRECISION array, dimension (N-1) */ +/* The scalar factors of the elementary reflectors (see Further */ +/* Details). */ + +/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= 1. */ +/* For optimum performance LWORK >= N*NB, where NB is the */ +/* optimal blocksize. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Further Details */ +/* =============== */ + +/* If UPLO = 'U', the matrix Q is represented as a product of elementary */ +/* reflectors */ + +/* Q = H(n-1) . . . H(2) H(1). */ + +/* Each H(i) has the form */ + +/* H(i) = I - tau * v * v' */ + +/* where tau is a real scalar, and v is a real vector with */ +/* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */ +/* A(1:i-1,i+1), and tau in TAU(i). */ + +/* If UPLO = 'L', the matrix Q is represented as a product of elementary */ +/* reflectors */ + +/* Q = H(1) H(2) . . . H(n-1). */ + +/* Each H(i) has the form */ + +/* H(i) = I - tau * v * v' */ + +/* where tau is a real scalar, and v is a real vector with */ +/* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */ +/* and tau in TAU(i). */ + +/* The contents of A on exit are illustrated by the following examples */ +/* with n = 5: */ + +/* if UPLO = 'U': if UPLO = 'L': */ + +/* ( d e v2 v3 v4 ) ( d ) */ +/* ( d e v3 v4 ) ( e d ) */ +/* ( d e v4 ) ( v1 e d ) */ +/* ( d e ) ( v1 v2 e d ) */ +/* ( d ) ( v1 v2 v3 e d ) */ + +/* where d and e denote diagonal and off-diagonal elements of T, and vi */ +/* denotes an element of the vector defining H(i). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --d__; + --e; + --tau; + --work; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + lquery = *lwork == -1; + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } else if (*lwork < 1 && ! lquery) { + *info = -9; + } + + if (*info == 0) { + +/* Determine the block size. */ + + nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); + lwkopt = *n * nb; + work[1] = (doublereal) lwkopt; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("DSYTRD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + work[1] = 1.; + return 0; + } + + nx = *n; + iws = 1; + if (nb > 1 && nb < *n) { + +/* Determine when to cross over from blocked to unblocked code */ +/* (last block is always handled by unblocked code). */ + +/* Computing MAX */ + i__1 = nb, i__2 = ilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, & + c_n1); + nx = max(i__1,i__2); + if (nx < *n) { + +/* Determine if workspace is large enough for blocked code. */ + + ldwork = *n; + iws = ldwork * nb; + if (*lwork < iws) { + +/* Not enough workspace to use optimal NB: determine the */ +/* minimum value of NB, and reduce NB or force use of */ +/* unblocked code by setting NX = N. */ + +/* Computing MAX */ + i__1 = *lwork / ldwork; + nb = max(i__1,1); + nbmin = ilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); + if (nb < nbmin) { + nx = *n; + } + } + } else { + nx = *n; + } + } else { + nb = 1; + } + + if (upper) { + +/* Reduce the upper triangle of A. */ +/* Columns 1:kk are handled by the unblocked method. */ + + kk = *n - (*n - nx + nb - 1) / nb * nb; + i__1 = kk + 1; + i__2 = -nb; + for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += + i__2) { + +/* Reduce columns i:i+nb-1 to tridiagonal form and form the */ +/* matrix W which is needed to update the unreduced part of */ +/* the matrix */ + + i__3 = i__ + nb - 1; + dlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], & + work[1], &ldwork); + +/* Update the unreduced submatrix A(1:i-1,1:i-1), using an */ +/* update of the form: A := A - V*W' - W*V' */ + + i__3 = i__ - 1; + dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 + + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda); + +/* Copy superdiagonal elements back into A, and diagonal */ +/* elements into D */ + + i__3 = i__ + nb - 1; + for (j = i__; j <= i__3; ++j) { + a[j - 1 + j * a_dim1] = e[j - 1]; + d__[j] = a[j + j * a_dim1]; +/* L10: */ + } +/* L20: */ + } + +/* Use unblocked code to reduce the last or only block */ + + dsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo); + } else { + +/* Reduce the lower triangle of A */ + + i__2 = *n - nx; + i__1 = nb; + for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { + +/* Reduce columns i:i+nb-1 to tridiagonal form and form the */ +/* matrix W which is needed to update the unreduced part of */ +/* the matrix */ + + i__3 = *n - i__ + 1; + dlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], & + tau[i__], &work[1], &ldwork); + +/* Update the unreduced submatrix A(i+ib:n,i+ib:n), using */ +/* an update of the form: A := A - V*W' - W*V' */ + + i__3 = *n - i__ - nb + 1; + dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + + i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[ + i__ + nb + (i__ + nb) * a_dim1], lda); + +/* Copy subdiagonal elements back into A, and diagonal */ +/* elements into D */ + + i__3 = i__ + nb - 1; + for (j = i__; j <= i__3; ++j) { + a[j + 1 + j * a_dim1] = e[j]; + d__[j] = a[j + j * a_dim1]; +/* L30: */ + } +/* L40: */ + } + +/* Use unblocked code to reduce the last or only block */ + + i__1 = *n - i__ + 1; + dsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], + &tau[i__], &iinfo); + } + + work[1] = (doublereal) lwkopt; + return 0; + +/* End of DSYTRD */ + +} /* dsytrd_ */ |