aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsygv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsygv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsygv.c')
-rw-r--r--contrib/libs/clapack/dsygv.c285
1 files changed, 285 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsygv.c b/contrib/libs/clapack/dsygv.c
new file mode 100644
index 0000000000..47a80c695d
--- /dev/null
+++ b/contrib/libs/clapack/dsygv.c
@@ -0,0 +1,285 @@
+/* dsygv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static doublereal c_b16 = 1.;
+
+/* Subroutine */ int dsygv_(integer *itype, char *jobz, char *uplo, integer *
+ n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
+ doublereal *w, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
+
+ /* Local variables */
+ integer nb, neig;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *);
+ char trans[1];
+ extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *);
+ logical upper;
+ extern /* Subroutine */ int dsyev_(char *, char *, integer *, doublereal *
+, integer *, doublereal *, doublereal *, integer *, integer *);
+ logical wantz;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *,
+ integer *, integer *);
+ integer lwkmin;
+ extern /* Subroutine */ int dsygst_(integer *, char *, integer *,
+ doublereal *, integer *, doublereal *, integer *, integer *);
+ integer lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSYGV computes all the eigenvalues, and optionally, the eigenvectors */
+/* of a real generalized symmetric-definite eigenproblem, of the form */
+/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. */
+/* Here A and B are assumed to be symmetric and B is also */
+/* positive definite. */
+
+/* Arguments */
+/* ========= */
+
+/* ITYPE (input) INTEGER */
+/* Specifies the problem type to be solved: */
+/* = 1: A*x = (lambda)*B*x */
+/* = 2: A*B*x = (lambda)*x */
+/* = 3: B*A*x = (lambda)*x */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
+/* On entry, the symmetric matrix A. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of A contains the */
+/* upper triangular part of the matrix A. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of A contains */
+/* the lower triangular part of the matrix A. */
+
+/* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
+/* matrix Z of eigenvectors. The eigenvectors are normalized */
+/* as follows: */
+/* if ITYPE = 1 or 2, Z**T*B*Z = I; */
+/* if ITYPE = 3, Z**T*inv(B)*Z = I. */
+/* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
+/* or the lower triangle (if UPLO='L') of A, including the */
+/* diagonal, is destroyed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
+/* On entry, the symmetric positive definite matrix B. */
+/* If UPLO = 'U', the leading N-by-N upper triangular part of B */
+/* contains the upper triangular part of the matrix B. */
+/* If UPLO = 'L', the leading N-by-N lower triangular part of B */
+/* contains the lower triangular part of the matrix B. */
+
+/* On exit, if INFO <= N, the part of B containing the matrix is */
+/* overwritten by the triangular factor U or L from the Cholesky */
+/* factorization B = U**T*U or B = L*L**T. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* W (output) DOUBLE PRECISION array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The length of the array WORK. LWORK >= max(1,3*N-1). */
+/* For optimal efficiency, LWORK >= (NB+2)*N, */
+/* where NB is the blocksize for DSYTRD returned by ILAENV. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: DPOTRF or DSYEV returned an error code: */
+/* <= N: if INFO = i, DSYEV failed to converge; */
+/* i off-diagonal elements of an intermediate */
+/* tridiagonal form did not converge to zero; */
+/* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
+/* minor of order i of B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --w;
+ --work;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+ lquery = *lwork == -1;
+
+ *info = 0;
+ if (*itype < 1 || *itype > 3) {
+ *info = -1;
+ } else if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -2;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ }
+
+ if (*info == 0) {
+/* Computing MAX */
+ i__1 = 1, i__2 = *n * 3 - 1;
+ lwkmin = max(i__1,i__2);
+ nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = lwkmin, i__2 = (nb + 2) * *n;
+ lwkopt = max(i__1,i__2);
+ work[1] = (doublereal) lwkopt;
+
+ if (*lwork < lwkmin && ! lquery) {
+ *info = -11;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSYGV ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a Cholesky factorization of B. */
+
+ dpotrf_(uplo, n, &b[b_offset], ldb, info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem and solve. */
+
+ dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
+ dsyev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, info);
+
+ if (wantz) {
+
+/* Backtransform eigenvectors to the original problem. */
+
+ neig = *n;
+ if (*info > 0) {
+ neig = *info - 1;
+ }
+ if (*itype == 1 || *itype == 2) {
+
+/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
+/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'N';
+ } else {
+ *(unsigned char *)trans = 'T';
+ }
+
+ dtrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
+ b_offset], ldb, &a[a_offset], lda);
+
+ } else if (*itype == 3) {
+
+/* For B*A*x=(lambda)*x; */
+/* backtransform eigenvectors: x = L*y or U'*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'T';
+ } else {
+ *(unsigned char *)trans = 'N';
+ }
+
+ dtrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
+ b_offset], ldb, &a[a_offset], lda);
+ }
+ }
+
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DSYGV */
+
+} /* dsygv_ */