diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dstevr.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dstevr.c')
-rw-r--r-- | contrib/libs/clapack/dstevr.c | 550 |
1 files changed, 550 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dstevr.c b/contrib/libs/clapack/dstevr.c new file mode 100644 index 0000000000..db78da67d3 --- /dev/null +++ b/contrib/libs/clapack/dstevr.c @@ -0,0 +1,550 @@ +/* dstevr.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__10 = 10; +static integer c__1 = 1; +static integer c__2 = 2; +static integer c__3 = 3; +static integer c__4 = 4; + +/* Subroutine */ int dstevr_(char *jobz, char *range, integer *n, doublereal * + d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, + integer *iu, doublereal *abstol, integer *m, doublereal *w, + doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, + integer *lwork, integer *iwork, integer *liwork, integer *info) +{ + /* System generated locals */ + integer z_dim1, z_offset, i__1, i__2; + doublereal d__1, d__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, jj; + doublereal eps, vll, vuu, tmp1; + integer imax; + doublereal rmin, rmax; + logical test; + doublereal tnrm; + integer itmp1; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *); + doublereal sigma; + extern logical lsame_(char *, char *); + char order[1]; + extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, + doublereal *, integer *), dswap_(integer *, doublereal *, integer + *, doublereal *, integer *); + integer lwmin; + logical wantz; + extern doublereal dlamch_(char *); + logical alleig, indeig; + integer iscale, ieeeok, indibl, indifl; + logical valeig; + doublereal safmin; + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + doublereal bignum; + extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); + integer indisp; + extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, + integer *, doublereal *, integer *, integer *, doublereal *, + integer *, doublereal *, integer *, integer *, integer *), + dsterf_(integer *, doublereal *, doublereal *, integer *); + integer indiwo; + extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal + *, doublereal *, integer *, integer *, doublereal *, doublereal *, + doublereal *, integer *, integer *, doublereal *, integer *, + integer *, doublereal *, integer *, integer *), + dstemr_(char *, char *, integer *, doublereal *, doublereal *, + doublereal *, doublereal *, integer *, integer *, integer *, + doublereal *, doublereal *, integer *, integer *, integer *, + logical *, doublereal *, integer *, integer *, integer *, integer + *); + integer liwmin; + logical tryrac; + integer nsplit; + doublereal smlnum; + logical lquery; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DSTEVR computes selected eigenvalues and, optionally, eigenvectors */ +/* of a real symmetric tridiagonal matrix T. Eigenvalues and */ +/* eigenvectors can be selected by specifying either a range of values */ +/* or a range of indices for the desired eigenvalues. */ + +/* Whenever possible, DSTEVR calls DSTEMR to compute the */ +/* eigenspectrum using Relatively Robust Representations. DSTEMR */ +/* computes eigenvalues by the dqds algorithm, while orthogonal */ +/* eigenvectors are computed from various "good" L D L^T representations */ +/* (also known as Relatively Robust Representations). Gram-Schmidt */ +/* orthogonalization is avoided as far as possible. More specifically, */ +/* the various steps of the algorithm are as follows. For the i-th */ +/* unreduced block of T, */ +/* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */ +/* is a relatively robust representation, */ +/* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */ +/* relative accuracy by the dqds algorithm, */ +/* (c) If there is a cluster of close eigenvalues, "choose" sigma_i */ +/* close to the cluster, and go to step (a), */ +/* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */ +/* compute the corresponding eigenvector by forming a */ +/* rank-revealing twisted factorization. */ +/* The desired accuracy of the output can be specified by the input */ +/* parameter ABSTOL. */ + +/* For more details, see "A new O(n^2) algorithm for the symmetric */ +/* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */ +/* Computer Science Division Technical Report No. UCB//CSD-97-971, */ +/* UC Berkeley, May 1997. */ + + +/* Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested */ +/* on machines which conform to the ieee-754 floating point standard. */ +/* DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and */ +/* when partial spectrum requests are made. */ + +/* Normal execution of DSTEMR may create NaNs and infinities and */ +/* hence may abort due to a floating point exception in environments */ +/* which do not handle NaNs and infinities in the ieee standard default */ +/* manner. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* RANGE (input) CHARACTER*1 */ +/* = 'A': all eigenvalues will be found. */ +/* = 'V': all eigenvalues in the half-open interval (VL,VU] */ +/* will be found. */ +/* = 'I': the IL-th through IU-th eigenvalues will be found. */ +/* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */ +/* ********* DSTEIN are called */ + +/* N (input) INTEGER */ +/* The order of the matrix. N >= 0. */ + +/* D (input/output) DOUBLE PRECISION array, dimension (N) */ +/* On entry, the n diagonal elements of the tridiagonal matrix */ +/* A. */ +/* On exit, D may be multiplied by a constant factor chosen */ +/* to avoid over/underflow in computing the eigenvalues. */ + +/* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */ +/* On entry, the (n-1) subdiagonal elements of the tridiagonal */ +/* matrix A in elements 1 to N-1 of E. */ +/* On exit, E may be multiplied by a constant factor chosen */ +/* to avoid over/underflow in computing the eigenvalues. */ + +/* VL (input) DOUBLE PRECISION */ +/* VU (input) DOUBLE PRECISION */ +/* If RANGE='V', the lower and upper bounds of the interval to */ +/* be searched for eigenvalues. VL < VU. */ +/* Not referenced if RANGE = 'A' or 'I'. */ + +/* IL (input) INTEGER */ +/* IU (input) INTEGER */ +/* If RANGE='I', the indices (in ascending order) of the */ +/* smallest and largest eigenvalues to be returned. */ +/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ +/* Not referenced if RANGE = 'A' or 'V'. */ + +/* ABSTOL (input) DOUBLE PRECISION */ +/* The absolute error tolerance for the eigenvalues. */ +/* An approximate eigenvalue is accepted as converged */ +/* when it is determined to lie in an interval [a,b] */ +/* of width less than or equal to */ + +/* ABSTOL + EPS * max( |a|,|b| ) , */ + +/* where EPS is the machine precision. If ABSTOL is less than */ +/* or equal to zero, then EPS*|T| will be used in its place, */ +/* where |T| is the 1-norm of the tridiagonal matrix obtained */ +/* by reducing A to tridiagonal form. */ + +/* See "Computing Small Singular Values of Bidiagonal Matrices */ +/* with Guaranteed High Relative Accuracy," by Demmel and */ +/* Kahan, LAPACK Working Note #3. */ + +/* If high relative accuracy is important, set ABSTOL to */ +/* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */ +/* eigenvalues are computed to high relative accuracy when */ +/* possible in future releases. The current code does not */ +/* make any guarantees about high relative accuracy, but */ +/* future releases will. See J. Barlow and J. Demmel, */ +/* "Computing Accurate Eigensystems of Scaled Diagonally */ +/* Dominant Matrices", LAPACK Working Note #7, for a discussion */ +/* of which matrices define their eigenvalues to high relative */ +/* accuracy. */ + +/* M (output) INTEGER */ +/* The total number of eigenvalues found. 0 <= M <= N. */ +/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ + +/* W (output) DOUBLE PRECISION array, dimension (N) */ +/* The first M elements contain the selected eigenvalues in */ +/* ascending order. */ + +/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */ +/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ +/* contain the orthonormal eigenvectors of the matrix A */ +/* corresponding to the selected eigenvalues, with the i-th */ +/* column of Z holding the eigenvector associated with W(i). */ +/* Note: the user must ensure that at least max(1,M) columns are */ +/* supplied in the array Z; if RANGE = 'V', the exact value of M */ +/* is not known in advance and an upper bound must be used. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ +/* The support of the eigenvectors in Z, i.e., the indices */ +/* indicating the nonzero elements in Z. The i-th eigenvector */ +/* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ +/* ISUPPZ( 2*i ). */ +/* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */ + +/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal (and */ +/* minimal) LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,20*N). */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal sizes of the WORK and IWORK */ +/* arrays, returns these values as the first entries of the WORK */ +/* and IWORK arrays, and no error message related to LWORK or */ +/* LIWORK is issued by XERBLA. */ + +/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ +/* On exit, if INFO = 0, IWORK(1) returns the optimal (and */ +/* minimal) LIWORK. */ + +/* LIWORK (input) INTEGER */ +/* The dimension of the array IWORK. LIWORK >= max(1,10*N). */ + +/* If LIWORK = -1, then a workspace query is assumed; the */ +/* routine only calculates the optimal sizes of the WORK and */ +/* IWORK arrays, returns these values as the first entries of */ +/* the WORK and IWORK arrays, and no error message related to */ +/* LWORK or LIWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: Internal error */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Inderjit Dhillon, IBM Almaden, USA */ +/* Osni Marques, LBNL/NERSC, USA */ +/* Ken Stanley, Computer Science Division, University of */ +/* California at Berkeley, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --d__; + --e; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --isuppz; + --work; + --iwork; + + /* Function Body */ + ieeeok = ilaenv_(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4); + + wantz = lsame_(jobz, "V"); + alleig = lsame_(range, "A"); + valeig = lsame_(range, "V"); + indeig = lsame_(range, "I"); + + lquery = *lwork == -1 || *liwork == -1; +/* Computing MAX */ + i__1 = 1, i__2 = *n * 20; + lwmin = max(i__1,i__2); +/* Computing MAX */ + i__1 = 1, i__2 = *n * 10; + liwmin = max(i__1,i__2); + + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (alleig || valeig || indeig)) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else { + if (valeig) { + if (*n > 0 && *vu <= *vl) { + *info = -7; + } + } else if (indeig) { + if (*il < 1 || *il > max(1,*n)) { + *info = -8; + } else if (*iu < min(*n,*il) || *iu > *n) { + *info = -9; + } + } + } + if (*info == 0) { + if (*ldz < 1 || wantz && *ldz < *n) { + *info = -14; + } + } + + if (*info == 0) { + work[1] = (doublereal) lwmin; + iwork[1] = liwmin; + + if (*lwork < lwmin && ! lquery) { + *info = -17; + } else if (*liwork < liwmin && ! lquery) { + *info = -19; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("DSTEVR", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + *m = 0; + if (*n == 0) { + return 0; + } + + if (*n == 1) { + if (alleig || indeig) { + *m = 1; + w[1] = d__[1]; + } else { + if (*vl < d__[1] && *vu >= d__[1]) { + *m = 1; + w[1] = d__[1]; + } + } + if (wantz) { + z__[z_dim1 + 1] = 1.; + } + return 0; + } + +/* Get machine constants. */ + + safmin = dlamch_("Safe minimum"); + eps = dlamch_("Precision"); + smlnum = safmin / eps; + bignum = 1. / smlnum; + rmin = sqrt(smlnum); +/* Computing MIN */ + d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); + rmax = min(d__1,d__2); + + +/* Scale matrix to allowable range, if necessary. */ + + iscale = 0; + vll = *vl; + vuu = *vu; + + tnrm = dlanst_("M", n, &d__[1], &e[1]); + if (tnrm > 0. && tnrm < rmin) { + iscale = 1; + sigma = rmin / tnrm; + } else if (tnrm > rmax) { + iscale = 1; + sigma = rmax / tnrm; + } + if (iscale == 1) { + dscal_(n, &sigma, &d__[1], &c__1); + i__1 = *n - 1; + dscal_(&i__1, &sigma, &e[1], &c__1); + if (valeig) { + vll = *vl * sigma; + vuu = *vu * sigma; + } + } +/* Initialize indices into workspaces. Note: These indices are used only */ +/* if DSTERF or DSTEMR fail. */ +/* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */ +/* stores the block indices of each of the M<=N eigenvalues. */ + indibl = 1; +/* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */ +/* stores the starting and finishing indices of each block. */ + indisp = indibl + *n; +/* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */ +/* that corresponding to eigenvectors that fail to converge in */ +/* DSTEIN. This information is discarded; if any fail, the driver */ +/* returns INFO > 0. */ + indifl = indisp + *n; +/* INDIWO is the offset of the remaining integer workspace. */ + indiwo = indisp + *n; + +/* If all eigenvalues are desired, then */ +/* call DSTERF or DSTEMR. If this fails for some eigenvalue, then */ +/* try DSTEBZ. */ + + + test = FALSE_; + if (indeig) { + if (*il == 1 && *iu == *n) { + test = TRUE_; + } + } + if ((alleig || test) && ieeeok == 1) { + i__1 = *n - 1; + dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1); + if (! wantz) { + dcopy_(n, &d__[1], &c__1, &w[1], &c__1); + dsterf_(n, &w[1], &work[1], info); + } else { + dcopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1); + if (*abstol <= *n * 2. * eps) { + tryrac = TRUE_; + } else { + tryrac = FALSE_; + } + i__1 = *lwork - (*n << 1); + dstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m, + &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[ + (*n << 1) + 1], &i__1, &iwork[1], liwork, info); + + } + if (*info == 0) { + *m = *n; + goto L10; + } + *info = 0; + } + +/* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */ + + if (wantz) { + *(unsigned char *)order = 'B'; + } else { + *(unsigned char *)order = 'E'; + } + dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, & + nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[ + indiwo], info); + + if (wantz) { + dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], & + z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl], + info); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + +L10: + if (iscale == 1) { + if (*info == 0) { + imax = *m; + } else { + imax = *info - 1; + } + d__1 = 1. / sigma; + dscal_(&imax, &d__1, &w[1], &c__1); + } + +/* If eigenvalues are not in order, then sort them, along with */ +/* eigenvectors. */ + + if (wantz) { + i__1 = *m - 1; + for (j = 1; j <= i__1; ++j) { + i__ = 0; + tmp1 = w[j]; + i__2 = *m; + for (jj = j + 1; jj <= i__2; ++jj) { + if (w[jj] < tmp1) { + i__ = jj; + tmp1 = w[jj]; + } +/* L20: */ + } + + if (i__ != 0) { + itmp1 = iwork[i__]; + w[i__] = w[j]; + iwork[i__] = iwork[j]; + w[j] = tmp1; + iwork[j] = itmp1; + dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], + &c__1); + } +/* L30: */ + } + } + +/* Causes problems with tests 19 & 20: */ +/* IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */ + + + work[1] = (doublereal) lwmin; + iwork[1] = liwmin; + return 0; + +/* End of DSTEVR */ + +} /* dstevr_ */ |