aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsptri.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsptri.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsptri.c')
-rw-r--r--contrib/libs/clapack/dsptri.c411
1 files changed, 411 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsptri.c b/contrib/libs/clapack/dsptri.c
new file mode 100644
index 0000000000..962be35295
--- /dev/null
+++ b/contrib/libs/clapack/dsptri.c
@@ -0,0 +1,411 @@
+/* dsptri.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static doublereal c_b11 = -1.;
+static doublereal c_b13 = 0.;
+
+/* Subroutine */ int dsptri_(char *uplo, integer *n, doublereal *ap, integer *
+ ipiv, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1;
+
+ /* Local variables */
+ doublereal d__;
+ integer j, k;
+ doublereal t, ak;
+ integer kc, kp, kx, kpc, npp;
+ doublereal akp1;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ doublereal temp, akkp1;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dswap_(integer *, doublereal *, integer
+ *, doublereal *, integer *);
+ integer kstep;
+ extern /* Subroutine */ int dspmv_(char *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *);
+ logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ integer kcnext;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSPTRI computes the inverse of a real symmetric indefinite matrix */
+/* A in packed storage using the factorization A = U*D*U**T or */
+/* A = L*D*L**T computed by DSPTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the details of the factorization are stored */
+/* as an upper or lower triangular matrix. */
+/* = 'U': Upper triangular, form is A = U*D*U**T; */
+/* = 'L': Lower triangular, form is A = L*D*L**T. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
+/* On entry, the block diagonal matrix D and the multipliers */
+/* used to obtain the factor U or L as computed by DSPTRF, */
+/* stored as a packed triangular matrix. */
+
+/* On exit, if INFO = 0, the (symmetric) inverse of the original */
+/* matrix, stored as a packed triangular matrix. The j-th column */
+/* of inv(A) is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', */
+/* AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D */
+/* as determined by DSPTRF. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
+/* inverse could not be computed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --work;
+ --ipiv;
+ --ap;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSPTRI", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Check that the diagonal matrix D is nonsingular. */
+
+ if (upper) {
+
+/* Upper triangular storage: examine D from bottom to top */
+
+ kp = *n * (*n + 1) / 2;
+ for (*info = *n; *info >= 1; --(*info)) {
+ if (ipiv[*info] > 0 && ap[kp] == 0.) {
+ return 0;
+ }
+ kp -= *info;
+/* L10: */
+ }
+ } else {
+
+/* Lower triangular storage: examine D from top to bottom. */
+
+ kp = 1;
+ i__1 = *n;
+ for (*info = 1; *info <= i__1; ++(*info)) {
+ if (ipiv[*info] > 0 && ap[kp] == 0.) {
+ return 0;
+ }
+ kp = kp + *n - *info + 1;
+/* L20: */
+ }
+ }
+ *info = 0;
+
+ if (upper) {
+
+/* Compute inv(A) from the factorization A = U*D*U'. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = 1;
+ kc = 1;
+L30:
+
+/* If K > N, exit from loop. */
+
+ if (k > *n) {
+ goto L50;
+ }
+
+ kcnext = kc + k;
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Invert the diagonal block. */
+
+ ap[kc + k - 1] = 1. / ap[kc + k - 1];
+
+/* Compute column K of the inverse. */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
+ ap[kc], &c__1);
+ i__1 = k - 1;
+ ap[kc + k - 1] -= ddot_(&i__1, &work[1], &c__1, &ap[kc], &
+ c__1);
+ }
+ kstep = 1;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Invert the diagonal block. */
+
+ t = (d__1 = ap[kcnext + k - 1], abs(d__1));
+ ak = ap[kc + k - 1] / t;
+ akp1 = ap[kcnext + k] / t;
+ akkp1 = ap[kcnext + k - 1] / t;
+ d__ = t * (ak * akp1 - 1.);
+ ap[kc + k - 1] = akp1 / d__;
+ ap[kcnext + k] = ak / d__;
+ ap[kcnext + k - 1] = -akkp1 / d__;
+
+/* Compute columns K and K+1 of the inverse. */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
+ ap[kc], &c__1);
+ i__1 = k - 1;
+ ap[kc + k - 1] -= ddot_(&i__1, &work[1], &c__1, &ap[kc], &
+ c__1);
+ i__1 = k - 1;
+ ap[kcnext + k - 1] -= ddot_(&i__1, &ap[kc], &c__1, &ap[kcnext]
+, &c__1);
+ i__1 = k - 1;
+ dcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
+ ap[kcnext], &c__1);
+ i__1 = k - 1;
+ ap[kcnext + k] -= ddot_(&i__1, &work[1], &c__1, &ap[kcnext], &
+ c__1);
+ }
+ kstep = 2;
+ kcnext = kcnext + k + 1;
+ }
+
+ kp = (i__1 = ipiv[k], abs(i__1));
+ if (kp != k) {
+
+/* Interchange rows and columns K and KP in the leading */
+/* submatrix A(1:k+1,1:k+1) */
+
+ kpc = (kp - 1) * kp / 2 + 1;
+ i__1 = kp - 1;
+ dswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
+ kx = kpc + kp - 1;
+ i__1 = k - 1;
+ for (j = kp + 1; j <= i__1; ++j) {
+ kx = kx + j - 1;
+ temp = ap[kc + j - 1];
+ ap[kc + j - 1] = ap[kx];
+ ap[kx] = temp;
+/* L40: */
+ }
+ temp = ap[kc + k - 1];
+ ap[kc + k - 1] = ap[kpc + kp - 1];
+ ap[kpc + kp - 1] = temp;
+ if (kstep == 2) {
+ temp = ap[kc + k + k - 1];
+ ap[kc + k + k - 1] = ap[kc + k + kp - 1];
+ ap[kc + k + kp - 1] = temp;
+ }
+ }
+
+ k += kstep;
+ kc = kcnext;
+ goto L30;
+L50:
+
+ ;
+ } else {
+
+/* Compute inv(A) from the factorization A = L*D*L'. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ npp = *n * (*n + 1) / 2;
+ k = *n;
+ kc = npp;
+L60:
+
+/* If K < 1, exit from loop. */
+
+ if (k < 1) {
+ goto L80;
+ }
+
+ kcnext = kc - (*n - k + 2);
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Invert the diagonal block. */
+
+ ap[kc] = 1. / ap[kc];
+
+/* Compute column K of the inverse. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ dspmv_(uplo, &i__1, &c_b11, &ap[kc + *n - k + 1], &work[1], &
+ c__1, &c_b13, &ap[kc + 1], &c__1);
+ i__1 = *n - k;
+ ap[kc] -= ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);
+ }
+ kstep = 1;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Invert the diagonal block. */
+
+ t = (d__1 = ap[kcnext + 1], abs(d__1));
+ ak = ap[kcnext] / t;
+ akp1 = ap[kc] / t;
+ akkp1 = ap[kcnext + 1] / t;
+ d__ = t * (ak * akp1 - 1.);
+ ap[kcnext] = akp1 / d__;
+ ap[kc] = ak / d__;
+ ap[kcnext + 1] = -akkp1 / d__;
+
+/* Compute columns K-1 and K of the inverse. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1],
+ &c__1, &c_b13, &ap[kc + 1], &c__1);
+ i__1 = *n - k;
+ ap[kc] -= ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);
+ i__1 = *n - k;
+ ap[kcnext + 1] -= ddot_(&i__1, &ap[kc + 1], &c__1, &ap[kcnext
+ + 2], &c__1);
+ i__1 = *n - k;
+ dcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1],
+ &c__1, &c_b13, &ap[kcnext + 2], &c__1);
+ i__1 = *n - k;
+ ap[kcnext] -= ddot_(&i__1, &work[1], &c__1, &ap[kcnext + 2], &
+ c__1);
+ }
+ kstep = 2;
+ kcnext -= *n - k + 3;
+ }
+
+ kp = (i__1 = ipiv[k], abs(i__1));
+ if (kp != k) {
+
+/* Interchange rows and columns K and KP in the trailing */
+/* submatrix A(k-1:n,k-1:n) */
+
+ kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
+ if (kp < *n) {
+ i__1 = *n - kp;
+ dswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
+ c__1);
+ }
+ kx = kc + kp - k;
+ i__1 = kp - 1;
+ for (j = k + 1; j <= i__1; ++j) {
+ kx = kx + *n - j + 1;
+ temp = ap[kc + j - k];
+ ap[kc + j - k] = ap[kx];
+ ap[kx] = temp;
+/* L70: */
+ }
+ temp = ap[kc];
+ ap[kc] = ap[kpc];
+ ap[kpc] = temp;
+ if (kstep == 2) {
+ temp = ap[kc - *n + k - 1];
+ ap[kc - *n + k - 1] = ap[kc - *n + kp - 1];
+ ap[kc - *n + kp - 1] = temp;
+ }
+ }
+
+ k -= kstep;
+ kc = kcnext;
+ goto L60;
+L80:
+ ;
+ }
+
+ return 0;
+
+/* End of DSPTRI */
+
+} /* dsptri_ */