aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsptrf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsptrf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsptrf.c')
-rw-r--r--contrib/libs/clapack/dsptrf.c628
1 files changed, 628 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsptrf.c b/contrib/libs/clapack/dsptrf.c
new file mode 100644
index 0000000000..35ad4737a4
--- /dev/null
+++ b/contrib/libs/clapack/dsptrf.c
@@ -0,0 +1,628 @@
+/* dsptrf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int dsptrf_(char *uplo, integer *n, doublereal *ap, integer *
+ ipiv, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ doublereal d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, k;
+ doublereal t, r1, d11, d12, d21, d22;
+ integer kc, kk, kp;
+ doublereal wk;
+ integer kx, knc, kpc, npp;
+ doublereal wkm1, wkp1;
+ integer imax, jmax;
+ extern /* Subroutine */ int dspr_(char *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *);
+ doublereal alpha;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ integer kstep;
+ logical upper;
+ doublereal absakk;
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ doublereal colmax, rowmax;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSPTRF computes the factorization of a real symmetric matrix A stored */
+/* in packed format using the Bunch-Kaufman diagonal pivoting method: */
+
+/* A = U*D*U**T or A = L*D*L**T */
+
+/* where U (or L) is a product of permutation and unit upper (lower) */
+/* triangular matrices, and D is symmetric and block diagonal with */
+/* 1-by-1 and 2-by-2 diagonal blocks. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* A, packed columnwise in a linear array. The j-th column of A */
+/* is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* On exit, the block diagonal matrix D and the multipliers used */
+/* to obtain the factor U or L, stored as a packed triangular */
+/* matrix overwriting A (see below for further details). */
+
+/* IPIV (output) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D. */
+/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
+/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
+/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
+/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
+/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
+/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
+/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
+/* has been completed, but the block diagonal matrix D is */
+/* exactly singular, and division by zero will occur if it */
+/* is used to solve a system of equations. */
+
+/* Further Details */
+/* =============== */
+
+/* 5-96 - Based on modifications by J. Lewis, Boeing Computer Services */
+/* Company */
+
+/* If UPLO = 'U', then A = U*D*U', where */
+/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
+/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
+/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
+/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
+/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
+/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
+
+/* ( I v 0 ) k-s */
+/* U(k) = ( 0 I 0 ) s */
+/* ( 0 0 I ) n-k */
+/* k-s s n-k */
+
+/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
+/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
+/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
+
+/* If UPLO = 'L', then A = L*D*L', where */
+/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
+/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
+/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
+/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
+/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
+/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
+
+/* ( I 0 0 ) k-1 */
+/* L(k) = ( 0 I 0 ) s */
+/* ( 0 v I ) n-k-s+1 */
+/* k-1 s n-k-s+1 */
+
+/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
+/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
+/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --ipiv;
+ --ap;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSPTRF", &i__1);
+ return 0;
+ }
+
+/* Initialize ALPHA for use in choosing pivot block size. */
+
+ alpha = (sqrt(17.) + 1.) / 8.;
+
+ if (upper) {
+
+/* Factorize A as U*D*U' using the upper triangle of A */
+
+/* K is the main loop index, decreasing from N to 1 in steps of */
+/* 1 or 2 */
+
+ k = *n;
+ kc = (*n - 1) * *n / 2 + 1;
+L10:
+ knc = kc;
+
+/* If K < 1, exit from loop */
+
+ if (k < 1) {
+ goto L110;
+ }
+ kstep = 1;
+
+/* Determine rows and columns to be interchanged and whether */
+/* a 1-by-1 or 2-by-2 pivot block will be used */
+
+ absakk = (d__1 = ap[kc + k - 1], abs(d__1));
+
+/* IMAX is the row-index of the largest off-diagonal element in */
+/* column K, and COLMAX is its absolute value */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ imax = idamax_(&i__1, &ap[kc], &c__1);
+ colmax = (d__1 = ap[kc + imax - 1], abs(d__1));
+ } else {
+ colmax = 0.;
+ }
+
+ if (max(absakk,colmax) == 0.) {
+
+/* Column K is zero: set INFO and continue */
+
+ if (*info == 0) {
+ *info = k;
+ }
+ kp = k;
+ } else {
+ if (absakk >= alpha * colmax) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else {
+
+/* JMAX is the column-index of the largest off-diagonal */
+/* element in row IMAX, and ROWMAX is its absolute value */
+
+ rowmax = 0.;
+ jmax = imax;
+ kx = imax * (imax + 1) / 2 + imax;
+ i__1 = k;
+ for (j = imax + 1; j <= i__1; ++j) {
+ if ((d__1 = ap[kx], abs(d__1)) > rowmax) {
+ rowmax = (d__1 = ap[kx], abs(d__1));
+ jmax = j;
+ }
+ kx += j;
+/* L20: */
+ }
+ kpc = (imax - 1) * imax / 2 + 1;
+ if (imax > 1) {
+ i__1 = imax - 1;
+ jmax = idamax_(&i__1, &ap[kpc], &c__1);
+/* Computing MAX */
+ d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - 1], abs(
+ d__1));
+ rowmax = max(d__2,d__3);
+ }
+
+ if (absakk >= alpha * colmax * (colmax / rowmax)) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else if ((d__1 = ap[kpc + imax - 1], abs(d__1)) >= alpha *
+ rowmax) {
+
+/* interchange rows and columns K and IMAX, use 1-by-1 */
+/* pivot block */
+
+ kp = imax;
+ } else {
+
+/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
+/* pivot block */
+
+ kp = imax;
+ kstep = 2;
+ }
+ }
+
+ kk = k - kstep + 1;
+ if (kstep == 2) {
+ knc = knc - k + 1;
+ }
+ if (kp != kk) {
+
+/* Interchange rows and columns KK and KP in the leading */
+/* submatrix A(1:k,1:k) */
+
+ i__1 = kp - 1;
+ dswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
+ kx = kpc + kp - 1;
+ i__1 = kk - 1;
+ for (j = kp + 1; j <= i__1; ++j) {
+ kx = kx + j - 1;
+ t = ap[knc + j - 1];
+ ap[knc + j - 1] = ap[kx];
+ ap[kx] = t;
+/* L30: */
+ }
+ t = ap[knc + kk - 1];
+ ap[knc + kk - 1] = ap[kpc + kp - 1];
+ ap[kpc + kp - 1] = t;
+ if (kstep == 2) {
+ t = ap[kc + k - 2];
+ ap[kc + k - 2] = ap[kc + kp - 1];
+ ap[kc + kp - 1] = t;
+ }
+ }
+
+/* Update the leading submatrix */
+
+ if (kstep == 1) {
+
+/* 1-by-1 pivot block D(k): column k now holds */
+
+/* W(k) = U(k)*D(k) */
+
+/* where U(k) is the k-th column of U */
+
+/* Perform a rank-1 update of A(1:k-1,1:k-1) as */
+
+/* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
+
+ r1 = 1. / ap[kc + k - 1];
+ i__1 = k - 1;
+ d__1 = -r1;
+ dspr_(uplo, &i__1, &d__1, &ap[kc], &c__1, &ap[1]);
+
+/* Store U(k) in column k */
+
+ i__1 = k - 1;
+ dscal_(&i__1, &r1, &ap[kc], &c__1);
+ } else {
+
+/* 2-by-2 pivot block D(k): columns k and k-1 now hold */
+
+/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
+
+/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
+/* of U */
+
+/* Perform a rank-2 update of A(1:k-2,1:k-2) as */
+
+/* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
+/* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
+
+ if (k > 2) {
+
+ d12 = ap[k - 1 + (k - 1) * k / 2];
+ d22 = ap[k - 1 + (k - 2) * (k - 1) / 2] / d12;
+ d11 = ap[k + (k - 1) * k / 2] / d12;
+ t = 1. / (d11 * d22 - 1.);
+ d12 = t / d12;
+
+ for (j = k - 2; j >= 1; --j) {
+ wkm1 = d12 * (d11 * ap[j + (k - 2) * (k - 1) / 2] -
+ ap[j + (k - 1) * k / 2]);
+ wk = d12 * (d22 * ap[j + (k - 1) * k / 2] - ap[j + (k
+ - 2) * (k - 1) / 2]);
+ for (i__ = j; i__ >= 1; --i__) {
+ ap[i__ + (j - 1) * j / 2] = ap[i__ + (j - 1) * j /
+ 2] - ap[i__ + (k - 1) * k / 2] * wk - ap[
+ i__ + (k - 2) * (k - 1) / 2] * wkm1;
+/* L40: */
+ }
+ ap[j + (k - 1) * k / 2] = wk;
+ ap[j + (k - 2) * (k - 1) / 2] = wkm1;
+/* L50: */
+ }
+
+ }
+
+ }
+ }
+
+/* Store details of the interchanges in IPIV */
+
+ if (kstep == 1) {
+ ipiv[k] = kp;
+ } else {
+ ipiv[k] = -kp;
+ ipiv[k - 1] = -kp;
+ }
+
+/* Decrease K and return to the start of the main loop */
+
+ k -= kstep;
+ kc = knc - k;
+ goto L10;
+
+ } else {
+
+/* Factorize A as L*D*L' using the lower triangle of A */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2 */
+
+ k = 1;
+ kc = 1;
+ npp = *n * (*n + 1) / 2;
+L60:
+ knc = kc;
+
+/* If K > N, exit from loop */
+
+ if (k > *n) {
+ goto L110;
+ }
+ kstep = 1;
+
+/* Determine rows and columns to be interchanged and whether */
+/* a 1-by-1 or 2-by-2 pivot block will be used */
+
+ absakk = (d__1 = ap[kc], abs(d__1));
+
+/* IMAX is the row-index of the largest off-diagonal element in */
+/* column K, and COLMAX is its absolute value */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ imax = k + idamax_(&i__1, &ap[kc + 1], &c__1);
+ colmax = (d__1 = ap[kc + imax - k], abs(d__1));
+ } else {
+ colmax = 0.;
+ }
+
+ if (max(absakk,colmax) == 0.) {
+
+/* Column K is zero: set INFO and continue */
+
+ if (*info == 0) {
+ *info = k;
+ }
+ kp = k;
+ } else {
+ if (absakk >= alpha * colmax) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else {
+
+/* JMAX is the column-index of the largest off-diagonal */
+/* element in row IMAX, and ROWMAX is its absolute value */
+
+ rowmax = 0.;
+ kx = kc + imax - k;
+ i__1 = imax - 1;
+ for (j = k; j <= i__1; ++j) {
+ if ((d__1 = ap[kx], abs(d__1)) > rowmax) {
+ rowmax = (d__1 = ap[kx], abs(d__1));
+ jmax = j;
+ }
+ kx = kx + *n - j;
+/* L70: */
+ }
+ kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
+ if (imax < *n) {
+ i__1 = *n - imax;
+ jmax = imax + idamax_(&i__1, &ap[kpc + 1], &c__1);
+/* Computing MAX */
+ d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - imax], abs(
+ d__1));
+ rowmax = max(d__2,d__3);
+ }
+
+ if (absakk >= alpha * colmax * (colmax / rowmax)) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else if ((d__1 = ap[kpc], abs(d__1)) >= alpha * rowmax) {
+
+/* interchange rows and columns K and IMAX, use 1-by-1 */
+/* pivot block */
+
+ kp = imax;
+ } else {
+
+/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
+/* pivot block */
+
+ kp = imax;
+ kstep = 2;
+ }
+ }
+
+ kk = k + kstep - 1;
+ if (kstep == 2) {
+ knc = knc + *n - k + 1;
+ }
+ if (kp != kk) {
+
+/* Interchange rows and columns KK and KP in the trailing */
+/* submatrix A(k:n,k:n) */
+
+ if (kp < *n) {
+ i__1 = *n - kp;
+ dswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
+ &c__1);
+ }
+ kx = knc + kp - kk;
+ i__1 = kp - 1;
+ for (j = kk + 1; j <= i__1; ++j) {
+ kx = kx + *n - j + 1;
+ t = ap[knc + j - kk];
+ ap[knc + j - kk] = ap[kx];
+ ap[kx] = t;
+/* L80: */
+ }
+ t = ap[knc];
+ ap[knc] = ap[kpc];
+ ap[kpc] = t;
+ if (kstep == 2) {
+ t = ap[kc + 1];
+ ap[kc + 1] = ap[kc + kp - k];
+ ap[kc + kp - k] = t;
+ }
+ }
+
+/* Update the trailing submatrix */
+
+ if (kstep == 1) {
+
+/* 1-by-1 pivot block D(k): column k now holds */
+
+/* W(k) = L(k)*D(k) */
+
+/* where L(k) is the k-th column of L */
+
+ if (k < *n) {
+
+/* Perform a rank-1 update of A(k+1:n,k+1:n) as */
+
+/* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
+
+ r1 = 1. / ap[kc];
+ i__1 = *n - k;
+ d__1 = -r1;
+ dspr_(uplo, &i__1, &d__1, &ap[kc + 1], &c__1, &ap[kc + *n
+ - k + 1]);
+
+/* Store L(k) in column K */
+
+ i__1 = *n - k;
+ dscal_(&i__1, &r1, &ap[kc + 1], &c__1);
+ }
+ } else {
+
+/* 2-by-2 pivot block D(k): columns K and K+1 now hold */
+
+/* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
+
+/* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
+/* of L */
+
+ if (k < *n - 1) {
+
+/* Perform a rank-2 update of A(k+2:n,k+2:n) as */
+
+/* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' */
+/* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' */
+
+ d21 = ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2];
+ d11 = ap[k + 1 + k * ((*n << 1) - k - 1) / 2] / d21;
+ d22 = ap[k + (k - 1) * ((*n << 1) - k) / 2] / d21;
+ t = 1. / (d11 * d22 - 1.);
+ d21 = t / d21;
+
+ i__1 = *n;
+ for (j = k + 2; j <= i__1; ++j) {
+ wk = d21 * (d11 * ap[j + (k - 1) * ((*n << 1) - k) /
+ 2] - ap[j + k * ((*n << 1) - k - 1) / 2]);
+ wkp1 = d21 * (d22 * ap[j + k * ((*n << 1) - k - 1) /
+ 2] - ap[j + (k - 1) * ((*n << 1) - k) / 2]);
+
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ ap[i__ + (j - 1) * ((*n << 1) - j) / 2] = ap[i__
+ + (j - 1) * ((*n << 1) - j) / 2] - ap[i__
+ + (k - 1) * ((*n << 1) - k) / 2] * wk -
+ ap[i__ + k * ((*n << 1) - k - 1) / 2] *
+ wkp1;
+/* L90: */
+ }
+
+ ap[j + (k - 1) * ((*n << 1) - k) / 2] = wk;
+ ap[j + k * ((*n << 1) - k - 1) / 2] = wkp1;
+
+/* L100: */
+ }
+ }
+ }
+ }
+
+/* Store details of the interchanges in IPIV */
+
+ if (kstep == 1) {
+ ipiv[k] = kp;
+ } else {
+ ipiv[k] = -kp;
+ ipiv[k + 1] = -kp;
+ }
+
+/* Increase K and return to the start of the main loop */
+
+ k += kstep;
+ kc = knc + *n - k + 2;
+ goto L60;
+
+ }
+
+L110:
+ return 0;
+
+/* End of DSPTRF */
+
+} /* dsptrf_ */