aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dspgvx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dspgvx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dspgvx.c')
-rw-r--r--contrib/libs/clapack/dspgvx.c341
1 files changed, 341 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dspgvx.c b/contrib/libs/clapack/dspgvx.c
new file mode 100644
index 0000000000..90c8aa572e
--- /dev/null
+++ b/contrib/libs/clapack/dspgvx.c
@@ -0,0 +1,341 @@
+/* dspgvx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int dspgvx_(integer *itype, char *jobz, char *range, char *
+ uplo, integer *n, doublereal *ap, doublereal *bp, doublereal *vl,
+ doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer
+ *m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work,
+ integer *iwork, integer *ifail, integer *info)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1;
+
+ /* Local variables */
+ integer j;
+ extern logical lsame_(char *, char *);
+ char trans[1];
+ logical upper;
+ extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *,
+ doublereal *, doublereal *, integer *),
+ dtpsv_(char *, char *, char *, integer *, doublereal *,
+ doublereal *, integer *);
+ logical wantz, alleig, indeig, valeig;
+ extern /* Subroutine */ int xerbla_(char *, integer *), dpptrf_(
+ char *, integer *, doublereal *, integer *), dspgst_(
+ integer *, char *, integer *, doublereal *, doublereal *, integer
+ *), dspevx_(char *, char *, char *, integer *, doublereal
+ *, doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, integer *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSPGVX computes selected eigenvalues, and optionally, eigenvectors */
+/* of a real generalized symmetric-definite eigenproblem, of the form */
+/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A */
+/* and B are assumed to be symmetric, stored in packed storage, and B */
+/* is also positive definite. Eigenvalues and eigenvectors can be */
+/* selected by specifying either a range of values or a range of indices */
+/* for the desired eigenvalues. */
+
+/* Arguments */
+/* ========= */
+
+/* ITYPE (input) INTEGER */
+/* Specifies the problem type to be solved: */
+/* = 1: A*x = (lambda)*B*x */
+/* = 2: A*B*x = (lambda)*x */
+/* = 3: B*A*x = (lambda)*x */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* RANGE (input) CHARACTER*1 */
+/* = 'A': all eigenvalues will be found. */
+/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
+/* will be found. */
+/* = 'I': the IL-th through IU-th eigenvalues will be found. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A and B are stored; */
+/* = 'L': Lower triangle of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix pencil (A,B). N >= 0. */
+
+/* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* A, packed columnwise in a linear array. The j-th column of A */
+/* is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* On exit, the contents of AP are destroyed. */
+
+/* BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* B, packed columnwise in a linear array. The j-th column of B */
+/* is stored in the array BP as follows: */
+/* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
+
+/* On exit, the triangular factor U or L from the Cholesky */
+/* factorization B = U**T*U or B = L*L**T, in the same storage */
+/* format as B. */
+
+/* VL (input) DOUBLE PRECISION */
+/* VU (input) DOUBLE PRECISION */
+/* If RANGE='V', the lower and upper bounds of the interval to */
+/* be searched for eigenvalues. VL < VU. */
+/* Not referenced if RANGE = 'A' or 'I'. */
+
+/* IL (input) INTEGER */
+/* IU (input) INTEGER */
+/* If RANGE='I', the indices (in ascending order) of the */
+/* smallest and largest eigenvalues to be returned. */
+/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
+/* Not referenced if RANGE = 'A' or 'V'. */
+
+/* ABSTOL (input) DOUBLE PRECISION */
+/* The absolute error tolerance for the eigenvalues. */
+/* An approximate eigenvalue is accepted as converged */
+/* when it is determined to lie in an interval [a,b] */
+/* of width less than or equal to */
+
+/* ABSTOL + EPS * max( |a|,|b| ) , */
+
+/* where EPS is the machine precision. If ABSTOL is less than */
+/* or equal to zero, then EPS*|T| will be used in its place, */
+/* where |T| is the 1-norm of the tridiagonal matrix obtained */
+/* by reducing A to tridiagonal form. */
+
+/* Eigenvalues will be computed most accurately when ABSTOL is */
+/* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
+/* If this routine returns with INFO>0, indicating that some */
+/* eigenvectors did not converge, try setting ABSTOL to */
+/* 2*DLAMCH('S'). */
+
+/* M (output) INTEGER */
+/* The total number of eigenvalues found. 0 <= M <= N. */
+/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
+
+/* W (output) DOUBLE PRECISION array, dimension (N) */
+/* On normal exit, the first M elements contain the selected */
+/* eigenvalues in ascending order. */
+
+/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
+/* If JOBZ = 'N', then Z is not referenced. */
+/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
+/* contain the orthonormal eigenvectors of the matrix A */
+/* corresponding to the selected eigenvalues, with the i-th */
+/* column of Z holding the eigenvector associated with W(i). */
+/* The eigenvectors are normalized as follows: */
+/* if ITYPE = 1 or 2, Z**T*B*Z = I; */
+/* if ITYPE = 3, Z**T*inv(B)*Z = I. */
+
+/* If an eigenvector fails to converge, then that column of Z */
+/* contains the latest approximation to the eigenvector, and the */
+/* index of the eigenvector is returned in IFAIL. */
+/* Note: the user must ensure that at least max(1,M) columns are */
+/* supplied in the array Z; if RANGE = 'V', the exact value of M */
+/* is not known in advance and an upper bound must be used. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (8*N) */
+
+/* IWORK (workspace) INTEGER array, dimension (5*N) */
+
+/* IFAIL (output) INTEGER array, dimension (N) */
+/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
+/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
+/* indices of the eigenvectors that failed to converge. */
+/* If JOBZ = 'N', then IFAIL is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: DPPTRF or DSPEVX returned an error code: */
+/* <= N: if INFO = i, DSPEVX failed to converge; */
+/* i eigenvectors failed to converge. Their indices */
+/* are stored in array IFAIL. */
+/* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
+/* minor of order i of B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --ap;
+ --bp;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --iwork;
+ --ifail;
+
+ /* Function Body */
+ upper = lsame_(uplo, "U");
+ wantz = lsame_(jobz, "V");
+ alleig = lsame_(range, "A");
+ valeig = lsame_(range, "V");
+ indeig = lsame_(range, "I");
+
+ *info = 0;
+ if (*itype < 1 || *itype > 3) {
+ *info = -1;
+ } else if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -2;
+ } else if (! (alleig || valeig || indeig)) {
+ *info = -3;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else {
+ if (valeig) {
+ if (*n > 0 && *vu <= *vl) {
+ *info = -9;
+ }
+ } else if (indeig) {
+ if (*il < 1) {
+ *info = -10;
+ } else if (*iu < min(*n,*il) || *iu > *n) {
+ *info = -11;
+ }
+ }
+ }
+ if (*info == 0) {
+ if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -16;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSPGVX", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *m = 0;
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a Cholesky factorization of B. */
+
+ dpptrf_(uplo, n, &bp[1], info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem and solve. */
+
+ dspgst_(itype, uplo, n, &ap[1], &bp[1], info);
+ dspevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], &
+ z__[z_offset], ldz, &work[1], &iwork[1], &ifail[1], info);
+
+ if (wantz) {
+
+/* Backtransform eigenvectors to the original problem. */
+
+ if (*info > 0) {
+ *m = *info - 1;
+ }
+ if (*itype == 1 || *itype == 2) {
+
+/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
+/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'N';
+ } else {
+ *(unsigned char *)trans = 'T';
+ }
+
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
+ 1], &c__1);
+/* L10: */
+ }
+
+ } else if (*itype == 3) {
+
+/* For B*A*x=(lambda)*x; */
+/* backtransform eigenvectors: x = L*y or U'*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'T';
+ } else {
+ *(unsigned char *)trans = 'N';
+ }
+
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
+ 1], &c__1);
+/* L20: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DSPGVX */
+
+} /* dspgvx_ */