aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsgesv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsgesv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsgesv.c')
-rw-r--r--contrib/libs/clapack/dsgesv.c416
1 files changed, 416 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsgesv.c b/contrib/libs/clapack/dsgesv.c
new file mode 100644
index 0000000000..44252af966
--- /dev/null
+++ b/contrib/libs/clapack/dsgesv.c
@@ -0,0 +1,416 @@
+/* dsgesv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b10 = -1.;
+static doublereal c_b11 = 1.;
+static integer c__1 = 1;
+
+/* Subroutine */ int dsgesv_(integer *n, integer *nrhs, doublereal *a,
+ integer *lda, integer *ipiv, doublereal *b, integer *ldb, doublereal *
+ x, integer *ldx, doublereal *work, real *swork, integer *iter,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset,
+ x_dim1, x_offset, i__1;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__;
+ doublereal cte, eps, anrm;
+ integer ptsa;
+ doublereal rnrm, xnrm;
+ integer ptsx;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ integer iiter;
+ extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *), dlag2s_(integer *, integer *,
+ doublereal *, integer *, real *, integer *, integer *), slag2d_(
+ integer *, integer *, real *, integer *, doublereal *, integer *,
+ integer *);
+ extern doublereal dlamch_(char *), dlange_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *);
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *),
+ xerbla_(char *, integer *), dgetrf_(integer *, integer *,
+ doublereal *, integer *, integer *, integer *), dgetrs_(char *,
+ integer *, integer *, doublereal *, integer *, integer *,
+ doublereal *, integer *, integer *), sgetrf_(integer *,
+ integer *, real *, integer *, integer *, integer *), sgetrs_(char
+ *, integer *, integer *, real *, integer *, integer *, real *,
+ integer *, integer *);
+
+
+/* -- LAPACK PROTOTYPE driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* February 2007 */
+
+/* .. */
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSGESV computes the solution to a real system of linear equations */
+/* A * X = B, */
+/* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
+
+/* DSGESV first attempts to factorize the matrix in SINGLE PRECISION */
+/* and use this factorization within an iterative refinement procedure */
+/* to produce a solution with DOUBLE PRECISION normwise backward error */
+/* quality (see below). If the approach fails the method switches to a */
+/* DOUBLE PRECISION factorization and solve. */
+
+/* The iterative refinement is not going to be a winning strategy if */
+/* the ratio SINGLE PRECISION performance over DOUBLE PRECISION */
+/* performance is too small. A reasonable strategy should take the */
+/* number of right-hand sides and the size of the matrix into account. */
+/* This might be done with a call to ILAENV in the future. Up to now, we */
+/* always try iterative refinement. */
+
+/* The iterative refinement process is stopped if */
+/* ITER > ITERMAX */
+/* or for all the RHS we have: */
+/* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX */
+/* where */
+/* o ITER is the number of the current iteration in the iterative */
+/* refinement process */
+/* o RNRM is the infinity-norm of the residual */
+/* o XNRM is the infinity-norm of the solution */
+/* o ANRM is the infinity-operator-norm of the matrix A */
+/* o EPS is the machine epsilon returned by DLAMCH('Epsilon') */
+/* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 */
+/* respectively. */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The number of linear equations, i.e., the order of the */
+/* matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* A (input or input/ouptut) DOUBLE PRECISION array, */
+/* dimension (LDA,N) */
+/* On entry, the N-by-N coefficient matrix A. */
+/* On exit, if iterative refinement has been successfully used */
+/* (INFO.EQ.0 and ITER.GE.0, see description below), then A is */
+/* unchanged, if double precision factorization has been used */
+/* (INFO.EQ.0 and ITER.LT.0, see description below), then the */
+/* array A contains the factors L and U from the factorization */
+/* A = P*L*U; the unit diagonal elements of L are not stored. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* IPIV (output) INTEGER array, dimension (N) */
+/* The pivot indices that define the permutation matrix P; */
+/* row i of the matrix was interchanged with row IPIV(i). */
+/* Corresponds either to the single precision factorization */
+/* (if INFO.EQ.0 and ITER.GE.0) or the double precision */
+/* factorization (if INFO.EQ.0 and ITER.LT.0). */
+
+/* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
+/* The N-by-NRHS right hand side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
+/* If INFO = 0, the N-by-NRHS solution matrix X. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(1,N). */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (N*NRHS) */
+/* This array is used to hold the residual vectors. */
+
+/* SWORK (workspace) REAL array, dimension (N*(N+NRHS)) */
+/* This array is used to use the single precision matrix and the */
+/* right-hand sides or solutions in single precision. */
+
+/* ITER (output) INTEGER */
+/* < 0: iterative refinement has failed, double precision */
+/* factorization has been performed */
+/* -1 : the routine fell back to full precision for */
+/* implementation- or machine-specific reasons */
+/* -2 : narrowing the precision induced an overflow, */
+/* the routine fell back to full precision */
+/* -3 : failure of SGETRF */
+/* -31: stop the iterative refinement after the 30th */
+/* iterations */
+/* > 0: iterative refinement has been sucessfully used. */
+/* Returns the number of iterations */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is */
+/* exactly zero. The factorization has been completed, */
+/* but the factor U is exactly singular, so the solution */
+/* could not be computed. */
+
+/* ========= */
+
+/* .. Parameters .. */
+
+
+
+
+/* .. Local Scalars .. */
+
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ work_dim1 = *n;
+ work_offset = 1 + work_dim1;
+ work -= work_offset;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --swork;
+
+ /* Function Body */
+ *info = 0;
+ *iter = 0;
+
+/* Test the input parameters. */
+
+ if (*n < 0) {
+ *info = -1;
+ } else if (*nrhs < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ } else if (*ldb < max(1,*n)) {
+ *info = -7;
+ } else if (*ldx < max(1,*n)) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSGESV", &i__1);
+ return 0;
+ }
+
+/* Quick return if (N.EQ.0). */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Skip single precision iterative refinement if a priori slower */
+/* than double precision factorization. */
+
+ if (FALSE_) {
+ *iter = -1;
+ goto L40;
+ }
+
+/* Compute some constants. */
+
+ anrm = dlange_("I", n, n, &a[a_offset], lda, &work[work_offset]);
+ eps = dlamch_("Epsilon");
+ cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;
+
+/* Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */
+
+ ptsa = 1;
+ ptsx = ptsa + *n * *n;
+
+/* Convert B from double precision to single precision and store the */
+/* result in SX. */
+
+ dlag2s_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);
+
+ if (*info != 0) {
+ *iter = -2;
+ goto L40;
+ }
+
+/* Convert A from double precision to single precision and store the */
+/* result in SA. */
+
+ dlag2s_(n, n, &a[a_offset], lda, &swork[ptsa], n, info);
+
+ if (*info != 0) {
+ *iter = -2;
+ goto L40;
+ }
+
+/* Compute the LU factorization of SA. */
+
+ sgetrf_(n, n, &swork[ptsa], n, &ipiv[1], info);
+
+ if (*info != 0) {
+ *iter = -3;
+ goto L40;
+ }
+
+/* Solve the system SA*SX = SB. */
+
+ sgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[ptsx],
+ n, info);
+
+/* Convert SX back to double precision */
+
+ slag2d_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);
+
+/* Compute R = B - AX (R is WORK). */
+
+ dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
+
+ dgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b10, &a[a_offset],
+ lda, &x[x_offset], ldx, &c_b11, &work[work_offset], n);
+
+/* Check whether the NRHS normwise backward errors satisfy the */
+/* stopping criterion. If yes, set ITER=0 and return. */
+
+ i__1 = *nrhs;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ xnrm = (d__1 = x[idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ *
+ x_dim1], abs(d__1));
+ rnrm = (d__1 = work[idamax_(n, &work[i__ * work_dim1 + 1], &c__1) +
+ i__ * work_dim1], abs(d__1));
+ if (rnrm > xnrm * cte) {
+ goto L10;
+ }
+ }
+
+/* If we are here, the NRHS normwise backward errors satisfy the */
+/* stopping criterion. We are good to exit. */
+
+ *iter = 0;
+ return 0;
+
+L10:
+
+ for (iiter = 1; iiter <= 30; ++iiter) {
+
+/* Convert R (in WORK) from double precision to single precision */
+/* and store the result in SX. */
+
+ dlag2s_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);
+
+ if (*info != 0) {
+ *iter = -2;
+ goto L40;
+ }
+
+/* Solve the system SA*SX = SR. */
+
+ sgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[
+ ptsx], n, info);
+
+/* Convert SX back to double precision and update the current */
+/* iterate. */
+
+ slag2d_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);
+
+ i__1 = *nrhs;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ daxpy_(n, &c_b11, &work[i__ * work_dim1 + 1], &c__1, &x[i__ *
+ x_dim1 + 1], &c__1);
+ }
+
+/* Compute R = B - AX (R is WORK). */
+
+ dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
+
+ dgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b10, &a[
+ a_offset], lda, &x[x_offset], ldx, &c_b11, &work[work_offset],
+ n);
+
+/* Check whether the NRHS normwise backward errors satisfy the */
+/* stopping criterion. If yes, set ITER=IITER>0 and return. */
+
+ i__1 = *nrhs;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ xnrm = (d__1 = x[idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ *
+ x_dim1], abs(d__1));
+ rnrm = (d__1 = work[idamax_(n, &work[i__ * work_dim1 + 1], &c__1)
+ + i__ * work_dim1], abs(d__1));
+ if (rnrm > xnrm * cte) {
+ goto L20;
+ }
+ }
+
+/* If we are here, the NRHS normwise backward errors satisfy the */
+/* stopping criterion, we are good to exit. */
+
+ *iter = iiter;
+
+ return 0;
+
+L20:
+
+/* L30: */
+ ;
+ }
+
+/* If we are at this place of the code, this is because we have */
+/* performed ITER=ITERMAX iterations and never satisified the */
+/* stopping criterion, set up the ITER flag accordingly and follow up */
+/* on double precision routine. */
+
+ *iter = -31;
+
+L40:
+
+/* Single-precision iterative refinement failed to converge to a */
+/* satisfactory solution, so we resort to double precision. */
+
+ dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
+
+ if (*info != 0) {
+ return 0;
+ }
+
+ dlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
+ dgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &x[x_offset]
+, ldx, info);
+
+ return 0;
+
+/* End of DSGESV. */
+
+} /* dsgesv_ */