aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsbtrd.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsbtrd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsbtrd.c')
-rw-r--r--contrib/libs/clapack/dsbtrd.c713
1 files changed, 713 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsbtrd.c b/contrib/libs/clapack/dsbtrd.c
new file mode 100644
index 0000000000..70bddbdf97
--- /dev/null
+++ b/contrib/libs/clapack/dsbtrd.c
@@ -0,0 +1,713 @@
+/* dsbtrd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b9 = 0.;
+static doublereal c_b10 = 1.;
+static integer c__1 = 1;
+
+/* Subroutine */ int dsbtrd_(char *vect, char *uplo, integer *n, integer *kd,
+ doublereal *ab, integer *ldab, doublereal *d__, doublereal *e,
+ doublereal *q, integer *ldq, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
+ i__5;
+
+ /* Local variables */
+ integer i__, j, k, l, i2, j1, j2, nq, nr, kd1, ibl, iqb, kdn, jin, nrt,
+ kdm1, inca, jend, lend, jinc, incx, last;
+ doublereal temp;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ integer j1end, j1inc, iqend;
+ extern logical lsame_(char *, char *);
+ logical initq, wantq, upper;
+ extern /* Subroutine */ int dlar2v_(integer *, doublereal *, doublereal *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *);
+ integer iqaend;
+ extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *),
+ dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *), xerbla_(char *, integer *), dlargv_(
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *), dlartv_(integer *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSBTRD reduces a real symmetric band matrix A to symmetric */
+/* tridiagonal form T by an orthogonal similarity transformation: */
+/* Q**T * A * Q = T. */
+
+/* Arguments */
+/* ========= */
+
+/* VECT (input) CHARACTER*1 */
+/* = 'N': do not form Q; */
+/* = 'V': form Q; */
+/* = 'U': update a matrix X, by forming X*Q. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
+
+/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix A, stored in the first KD+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
+/* On exit, the diagonal elements of AB are overwritten by the */
+/* diagonal elements of the tridiagonal matrix T; if KD > 0, the */
+/* elements on the first superdiagonal (if UPLO = 'U') or the */
+/* first subdiagonal (if UPLO = 'L') are overwritten by the */
+/* off-diagonal elements of T; the rest of AB is overwritten by */
+/* values generated during the reduction. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD+1. */
+
+/* D (output) DOUBLE PRECISION array, dimension (N) */
+/* The diagonal elements of the tridiagonal matrix T. */
+
+/* E (output) DOUBLE PRECISION array, dimension (N-1) */
+/* The off-diagonal elements of the tridiagonal matrix T: */
+/* E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
+
+/* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
+/* On entry, if VECT = 'U', then Q must contain an N-by-N */
+/* matrix X; if VECT = 'N' or 'V', then Q need not be set. */
+
+/* On exit: */
+/* if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; */
+/* if VECT = 'U', Q contains the product X*Q; */
+/* if VECT = 'N', the array Q is not referenced. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. */
+/* LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* Modified by Linda Kaufman, Bell Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --d__;
+ --e;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ --work;
+
+ /* Function Body */
+ initq = lsame_(vect, "V");
+ wantq = initq || lsame_(vect, "U");
+ upper = lsame_(uplo, "U");
+ kd1 = *kd + 1;
+ kdm1 = *kd - 1;
+ incx = *ldab - 1;
+ iqend = 1;
+
+ *info = 0;
+ if (! wantq && ! lsame_(vect, "N")) {
+ *info = -1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*kd < 0) {
+ *info = -4;
+ } else if (*ldab < kd1) {
+ *info = -6;
+ } else if (*ldq < max(1,*n) && wantq) {
+ *info = -10;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSBTRD", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Initialize Q to the unit matrix, if needed */
+
+ if (initq) {
+ dlaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);
+ }
+
+/* Wherever possible, plane rotations are generated and applied in */
+/* vector operations of length NR over the index set J1:J2:KD1. */
+
+/* The cosines and sines of the plane rotations are stored in the */
+/* arrays D and WORK. */
+
+ inca = kd1 * *ldab;
+/* Computing MIN */
+ i__1 = *n - 1;
+ kdn = min(i__1,*kd);
+ if (upper) {
+
+ if (*kd > 1) {
+
+/* Reduce to tridiagonal form, working with upper triangle */
+
+ nr = 0;
+ j1 = kdn + 2;
+ j2 = 1;
+
+ i__1 = *n - 2;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Reduce i-th row of matrix to tridiagonal form */
+
+ for (k = kdn + 1; k >= 2; --k) {
+ j1 += kdn;
+ j2 += kdn;
+
+ if (nr > 0) {
+
+/* generate plane rotations to annihilate nonzero */
+/* elements which have been created outside the band */
+
+ dlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
+ work[j1], &kd1, &d__[j1], &kd1);
+
+/* apply rotations from the right */
+
+
+/* Dependent on the the number of diagonals either */
+/* DLARTV or DROT is used */
+
+ if (nr >= (*kd << 1) - 1) {
+ i__2 = *kd - 1;
+ for (l = 1; l <= i__2; ++l) {
+ dlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
+ &inca, &ab[l + j1 * ab_dim1], &inca, &
+ d__[j1], &work[j1], &kd1);
+/* L10: */
+ }
+
+ } else {
+ jend = j1 + (nr - 1) * kd1;
+ i__2 = jend;
+ i__3 = kd1;
+ for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
+ i__2; jinc += i__3) {
+ drot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
+ c__1, &ab[jinc * ab_dim1 + 1], &c__1,
+ &d__[jinc], &work[jinc]);
+/* L20: */
+ }
+ }
+ }
+
+
+ if (k > 2) {
+ if (k <= *n - i__ + 1) {
+
+/* generate plane rotation to annihilate a(i,i+k-1) */
+/* within the band */
+
+ dlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
+, &ab[*kd - k + 2 + (i__ + k - 1) *
+ ab_dim1], &d__[i__ + k - 1], &work[i__ +
+ k - 1], &temp);
+ ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;
+
+/* apply rotation from the right */
+
+ i__3 = k - 3;
+ drot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
+ ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
+ k - 1) * ab_dim1], &c__1, &d__[i__ + k -
+ 1], &work[i__ + k - 1]);
+ }
+ ++nr;
+ j1 = j1 - kdn - 1;
+ }
+
+/* apply plane rotations from both sides to diagonal */
+/* blocks */
+
+ if (nr > 0) {
+ dlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
+ j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
+ &d__[j1], &work[j1], &kd1);
+ }
+
+/* apply plane rotations from the left */
+
+ if (nr > 0) {
+ if ((*kd << 1) - 1 < nr) {
+
+/* Dependent on the the number of diagonals either */
+/* DLARTV or DROT is used */
+
+ i__3 = *kd - 1;
+ for (l = 1; l <= i__3; ++l) {
+ if (j2 + l > *n) {
+ nrt = nr - 1;
+ } else {
+ nrt = nr;
+ }
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[*kd - l + (j1 + l) *
+ ab_dim1], &inca, &ab[*kd - l + 1
+ + (j1 + l) * ab_dim1], &inca, &
+ d__[j1], &work[j1], &kd1);
+ }
+/* L30: */
+ }
+ } else {
+ j1end = j1 + kd1 * (nr - 2);
+ if (j1end >= j1) {
+ i__3 = j1end;
+ i__2 = kd1;
+ for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
+ i__3; jin += i__2) {
+ i__4 = *kd - 1;
+ drot_(&i__4, &ab[*kd - 1 + (jin + 1) *
+ ab_dim1], &incx, &ab[*kd + (jin +
+ 1) * ab_dim1], &incx, &d__[jin], &
+ work[jin]);
+/* L40: */
+ }
+ }
+/* Computing MIN */
+ i__2 = kdm1, i__3 = *n - j2;
+ lend = min(i__2,i__3);
+ last = j1end + kd1;
+ if (lend > 0) {
+ drot_(&lend, &ab[*kd - 1 + (last + 1) *
+ ab_dim1], &incx, &ab[*kd + (last + 1)
+ * ab_dim1], &incx, &d__[last], &work[
+ last]);
+ }
+ }
+ }
+
+ if (wantq) {
+
+/* accumulate product of plane rotations in Q */
+
+ if (initq) {
+
+/* take advantage of the fact that Q was */
+/* initially the Identity matrix */
+
+ iqend = max(iqend,j2);
+/* Computing MAX */
+ i__2 = 0, i__3 = k - 3;
+ i2 = max(i__2,i__3);
+ iqaend = i__ * *kd + 1;
+ if (k == 2) {
+ iqaend += *kd;
+ }
+ iqaend = min(iqaend,iqend);
+ i__2 = j2;
+ i__3 = kd1;
+ for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
+ += i__3) {
+ ibl = i__ - i2 / kdm1;
+ ++i2;
+/* Computing MAX */
+ i__4 = 1, i__5 = j - ibl;
+ iqb = max(i__4,i__5);
+ nq = iqaend + 1 - iqb;
+/* Computing MIN */
+ i__4 = iqaend + *kd;
+ iqaend = min(i__4,iqend);
+ drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
+ &q[iqb + j * q_dim1], &c__1, &d__[j],
+ &work[j]);
+/* L50: */
+ }
+ } else {
+
+ i__3 = j2;
+ i__2 = kd1;
+ for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
+ += i__2) {
+ drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
+ j * q_dim1 + 1], &c__1, &d__[j], &
+ work[j]);
+/* L60: */
+ }
+ }
+
+ }
+
+ if (j2 + kdn > *n) {
+
+/* adjust J2 to keep within the bounds of the matrix */
+
+ --nr;
+ j2 = j2 - kdn - 1;
+ }
+
+ i__2 = j2;
+ i__3 = kd1;
+ for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
+ {
+
+/* create nonzero element a(j-1,j+kd) outside the band */
+/* and store it in WORK */
+
+ work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];
+ ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) *
+ ab_dim1 + 1];
+/* L70: */
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ }
+
+ if (*kd > 0) {
+
+/* copy off-diagonal elements to E */
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ e[i__] = ab[*kd + (i__ + 1) * ab_dim1];
+/* L100: */
+ }
+ } else {
+
+/* set E to zero if original matrix was diagonal */
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ e[i__] = 0.;
+/* L110: */
+ }
+ }
+
+/* copy diagonal elements to D */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = ab[kd1 + i__ * ab_dim1];
+/* L120: */
+ }
+
+ } else {
+
+ if (*kd > 1) {
+
+/* Reduce to tridiagonal form, working with lower triangle */
+
+ nr = 0;
+ j1 = kdn + 2;
+ j2 = 1;
+
+ i__1 = *n - 2;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Reduce i-th column of matrix to tridiagonal form */
+
+ for (k = kdn + 1; k >= 2; --k) {
+ j1 += kdn;
+ j2 += kdn;
+
+ if (nr > 0) {
+
+/* generate plane rotations to annihilate nonzero */
+/* elements which have been created outside the band */
+
+ dlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
+ work[j1], &kd1, &d__[j1], &kd1);
+
+/* apply plane rotations from one side */
+
+
+/* Dependent on the the number of diagonals either */
+/* DLARTV or DROT is used */
+
+ if (nr > (*kd << 1) - 1) {
+ i__3 = *kd - 1;
+ for (l = 1; l <= i__3; ++l) {
+ dlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
+ ab_dim1], &inca, &ab[kd1 - l + 1 + (
+ j1 - kd1 + l) * ab_dim1], &inca, &d__[
+ j1], &work[j1], &kd1);
+/* L130: */
+ }
+ } else {
+ jend = j1 + kd1 * (nr - 1);
+ i__3 = jend;
+ i__2 = kd1;
+ for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
+ i__3; jinc += i__2) {
+ drot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
+, &incx, &ab[kd1 + (jinc - *kd) *
+ ab_dim1], &incx, &d__[jinc], &work[
+ jinc]);
+/* L140: */
+ }
+ }
+
+ }
+
+ if (k > 2) {
+ if (k <= *n - i__ + 1) {
+
+/* generate plane rotation to annihilate a(i+k-1,i) */
+/* within the band */
+
+ dlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
+ ab_dim1], &d__[i__ + k - 1], &work[i__ +
+ k - 1], &temp);
+ ab[k - 1 + i__ * ab_dim1] = temp;
+
+/* apply rotation from the left */
+
+ i__2 = k - 3;
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ drot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
+ i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
+ i__4, &d__[i__ + k - 1], &work[i__ + k -
+ 1]);
+ }
+ ++nr;
+ j1 = j1 - kdn - 1;
+ }
+
+/* apply plane rotations from both sides to diagonal */
+/* blocks */
+
+ if (nr > 0) {
+ dlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
+ ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
+ inca, &d__[j1], &work[j1], &kd1);
+ }
+
+/* apply plane rotations from the right */
+
+
+/* Dependent on the the number of diagonals either */
+/* DLARTV or DROT is used */
+
+ if (nr > 0) {
+ if (nr > (*kd << 1) - 1) {
+ i__2 = *kd - 1;
+ for (l = 1; l <= i__2; ++l) {
+ if (j2 + l > *n) {
+ nrt = nr - 1;
+ } else {
+ nrt = nr;
+ }
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + 2 + (j1 - 1) *
+ ab_dim1], &inca, &ab[l + 1 + j1 *
+ ab_dim1], &inca, &d__[j1], &work[
+ j1], &kd1);
+ }
+/* L150: */
+ }
+ } else {
+ j1end = j1 + kd1 * (nr - 2);
+ if (j1end >= j1) {
+ i__2 = j1end;
+ i__3 = kd1;
+ for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
+ j1inc <= i__2; j1inc += i__3) {
+ drot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
+ 3], &c__1, &ab[j1inc * ab_dim1 +
+ 2], &c__1, &d__[j1inc], &work[
+ j1inc]);
+/* L160: */
+ }
+ }
+/* Computing MIN */
+ i__3 = kdm1, i__2 = *n - j2;
+ lend = min(i__3,i__2);
+ last = j1end + kd1;
+ if (lend > 0) {
+ drot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
+ c__1, &ab[last * ab_dim1 + 2], &c__1,
+ &d__[last], &work[last]);
+ }
+ }
+ }
+
+
+
+ if (wantq) {
+
+/* accumulate product of plane rotations in Q */
+
+ if (initq) {
+
+/* take advantage of the fact that Q was */
+/* initially the Identity matrix */
+
+ iqend = max(iqend,j2);
+/* Computing MAX */
+ i__3 = 0, i__2 = k - 3;
+ i2 = max(i__3,i__2);
+ iqaend = i__ * *kd + 1;
+ if (k == 2) {
+ iqaend += *kd;
+ }
+ iqaend = min(iqaend,iqend);
+ i__3 = j2;
+ i__2 = kd1;
+ for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
+ += i__2) {
+ ibl = i__ - i2 / kdm1;
+ ++i2;
+/* Computing MAX */
+ i__4 = 1, i__5 = j - ibl;
+ iqb = max(i__4,i__5);
+ nq = iqaend + 1 - iqb;
+/* Computing MIN */
+ i__4 = iqaend + *kd;
+ iqaend = min(i__4,iqend);
+ drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
+ &q[iqb + j * q_dim1], &c__1, &d__[j],
+ &work[j]);
+/* L170: */
+ }
+ } else {
+
+ i__2 = j2;
+ i__3 = kd1;
+ for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
+ += i__3) {
+ drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
+ j * q_dim1 + 1], &c__1, &d__[j], &
+ work[j]);
+/* L180: */
+ }
+ }
+ }
+
+ if (j2 + kdn > *n) {
+
+/* adjust J2 to keep within the bounds of the matrix */
+
+ --nr;
+ j2 = j2 - kdn - 1;
+ }
+
+ i__3 = j2;
+ i__2 = kd1;
+ for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
+ {
+
+/* create nonzero element a(j+kd,j-1) outside the */
+/* band and store it in WORK */
+
+ work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];
+ ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1]
+ ;
+/* L190: */
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ }
+
+ if (*kd > 0) {
+
+/* copy off-diagonal elements to E */
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ e[i__] = ab[i__ * ab_dim1 + 2];
+/* L220: */
+ }
+ } else {
+
+/* set E to zero if original matrix was diagonal */
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ e[i__] = 0.;
+/* L230: */
+ }
+ }
+
+/* copy diagonal elements to D */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = ab[i__ * ab_dim1 + 1];
+/* L240: */
+ }
+ }
+
+ return 0;
+
+/* End of DSBTRD */
+
+} /* dsbtrd_ */