diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsbgv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsbgv.c')
-rw-r--r-- | contrib/libs/clapack/dsbgv.c | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsbgv.c b/contrib/libs/clapack/dsbgv.c new file mode 100644 index 0000000000..0fcf76776a --- /dev/null +++ b/contrib/libs/clapack/dsbgv.c @@ -0,0 +1,234 @@ +/* dsbgv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int dsbgv_(char *jobz, char *uplo, integer *n, integer *ka, + integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer * + ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, + integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; + + /* Local variables */ + integer inde; + char vect[1]; + extern logical lsame_(char *, char *); + integer iinfo; + logical upper, wantz; + extern /* Subroutine */ int xerbla_(char *, integer *), dpbstf_( + char *, integer *, integer *, doublereal *, integer *, integer *), dsbtrd_(char *, char *, integer *, integer *, doublereal + *, integer *, doublereal *, doublereal *, doublereal *, integer *, + doublereal *, integer *), dsbgst_(char *, char *, + integer *, integer *, integer *, doublereal *, integer *, + doublereal *, integer *, doublereal *, integer *, doublereal *, + integer *), dsterf_(integer *, doublereal *, + doublereal *, integer *); + integer indwrk; + extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, + doublereal *, doublereal *, integer *, doublereal *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DSBGV computes all the eigenvalues, and optionally, the eigenvectors */ +/* of a real generalized symmetric-definite banded eigenproblem, of */ +/* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */ +/* and banded, and B is also positive definite. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangles of A and B are stored; */ +/* = 'L': Lower triangles of A and B are stored. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* KA (input) INTEGER */ +/* The number of superdiagonals of the matrix A if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ + +/* KB (input) INTEGER */ +/* The number of superdiagonals of the matrix B if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ + +/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */ +/* On entry, the upper or lower triangle of the symmetric band */ +/* matrix A, stored in the first ka+1 rows of the array. The */ +/* j-th column of A is stored in the j-th column of the array AB */ +/* as follows: */ +/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ +/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ + +/* On exit, the contents of AB are destroyed. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KA+1. */ + +/* BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */ +/* On entry, the upper or lower triangle of the symmetric band */ +/* matrix B, stored in the first kb+1 rows of the array. The */ +/* j-th column of B is stored in the j-th column of the array BB */ +/* as follows: */ +/* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ +/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ + +/* On exit, the factor S from the split Cholesky factorization */ +/* B = S**T*S, as returned by DPBSTF. */ + +/* LDBB (input) INTEGER */ +/* The leading dimension of the array BB. LDBB >= KB+1. */ + +/* W (output) DOUBLE PRECISION array, dimension (N) */ +/* If INFO = 0, the eigenvalues in ascending order. */ + +/* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */ +/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ +/* eigenvectors, with the i-th column of Z holding the */ +/* eigenvector associated with W(i). The eigenvectors are */ +/* normalized so that Z**T*B*Z = I. */ +/* If JOBZ = 'N', then Z is not referenced. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= N. */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, and i is: */ +/* <= N: the algorithm failed to converge: */ +/* i off-diagonal elements of an intermediate */ +/* tridiagonal form did not converge to zero; */ +/* > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF */ +/* returned INFO = i: B is not positive definite. */ +/* The factorization of B could not be completed and */ +/* no eigenvalues or eigenvectors were computed. */ + +/* ===================================================================== */ + +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + bb_dim1 = *ldbb; + bb_offset = 1 + bb_dim1; + bb -= bb_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + upper = lsame_(uplo, "U"); + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (upper || lsame_(uplo, "L"))) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*ka < 0) { + *info = -4; + } else if (*kb < 0 || *kb > *ka) { + *info = -5; + } else if (*ldab < *ka + 1) { + *info = -7; + } else if (*ldbb < *kb + 1) { + *info = -9; + } else if (*ldz < 1 || wantz && *ldz < *n) { + *info = -12; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DSBGV ", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Form a split Cholesky factorization of B. */ + + dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); + if (*info != 0) { + *info = *n + *info; + return 0; + } + +/* Transform problem to standard eigenvalue problem. */ + + inde = 1; + indwrk = inde + *n; + dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, + &z__[z_offset], ldz, &work[indwrk], &iinfo) + ; + +/* Reduce to tridiagonal form. */ + + if (wantz) { + *(unsigned char *)vect = 'U'; + } else { + *(unsigned char *)vect = 'N'; + } + dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ + z_offset], ldz, &work[indwrk], &iinfo); + +/* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR. */ + + if (! wantz) { + dsterf_(n, &w[1], &work[inde], info); + } else { + dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ + indwrk], info); + } + return 0; + +/* End of DSBGV */ + +} /* dsbgv_ */ |