aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsbgv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsbgv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsbgv.c')
-rw-r--r--contrib/libs/clapack/dsbgv.c234
1 files changed, 234 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsbgv.c b/contrib/libs/clapack/dsbgv.c
new file mode 100644
index 0000000000..0fcf76776a
--- /dev/null
+++ b/contrib/libs/clapack/dsbgv.c
@@ -0,0 +1,234 @@
+/* dsbgv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int dsbgv_(char *jobz, char *uplo, integer *n, integer *ka,
+ integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *
+ ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work,
+ integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
+
+ /* Local variables */
+ integer inde;
+ char vect[1];
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ logical upper, wantz;
+ extern /* Subroutine */ int xerbla_(char *, integer *), dpbstf_(
+ char *, integer *, integer *, doublereal *, integer *, integer *), dsbtrd_(char *, char *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *), dsbgst_(char *, char *,
+ integer *, integer *, integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *), dsterf_(integer *, doublereal *,
+ doublereal *, integer *);
+ integer indwrk;
+ extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSBGV computes all the eigenvalues, and optionally, the eigenvectors */
+/* of a real generalized symmetric-definite banded eigenproblem, of */
+/* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */
+/* and banded, and B is also positive definite. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* KA (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
+
+/* KB (input) INTEGER */
+/* The number of superdiagonals of the matrix B if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
+
+/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix A, stored in the first ka+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
+
+/* On exit, the contents of AB are destroyed. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KA+1. */
+
+/* BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix B, stored in the first kb+1 rows of the array. The */
+/* j-th column of B is stored in the j-th column of the array BB */
+/* as follows: */
+/* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
+/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */
+
+/* On exit, the factor S from the split Cholesky factorization */
+/* B = S**T*S, as returned by DPBSTF. */
+
+/* LDBB (input) INTEGER */
+/* The leading dimension of the array BB. LDBB >= KB+1. */
+
+/* W (output) DOUBLE PRECISION array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */
+/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
+/* eigenvectors, with the i-th column of Z holding the */
+/* eigenvector associated with W(i). The eigenvectors are */
+/* normalized so that Z**T*B*Z = I. */
+/* If JOBZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= N. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, and i is: */
+/* <= N: the algorithm failed to converge: */
+/* i off-diagonal elements of an intermediate */
+/* tridiagonal form did not converge to zero; */
+/* > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF */
+/* returned INFO = i: B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ bb_dim1 = *ldbb;
+ bb_offset = 1 + bb_dim1;
+ bb -= bb_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ka < 0) {
+ *info = -4;
+ } else if (*kb < 0 || *kb > *ka) {
+ *info = -5;
+ } else if (*ldab < *ka + 1) {
+ *info = -7;
+ } else if (*ldbb < *kb + 1) {
+ *info = -9;
+ } else if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -12;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSBGV ", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a split Cholesky factorization of B. */
+
+ dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem. */
+
+ inde = 1;
+ indwrk = inde + *n;
+ dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
+ &z__[z_offset], ldz, &work[indwrk], &iinfo)
+ ;
+
+/* Reduce to tridiagonal form. */
+
+ if (wantz) {
+ *(unsigned char *)vect = 'U';
+ } else {
+ *(unsigned char *)vect = 'N';
+ }
+ dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
+ z_offset], ldz, &work[indwrk], &iinfo);
+
+/* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR. */
+
+ if (! wantz) {
+ dsterf_(n, &w[1], &work[inde], info);
+ } else {
+ dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
+ indwrk], info);
+ }
+ return 0;
+
+/* End of DSBGV */
+
+} /* dsbgv_ */