aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsbgst.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsbgst.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsbgst.c')
-rw-r--r--contrib/libs/clapack/dsbgst.c1755
1 files changed, 1755 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsbgst.c b/contrib/libs/clapack/dsbgst.c
new file mode 100644
index 0000000000..24c9aad461
--- /dev/null
+++ b/contrib/libs/clapack/dsbgst.c
@@ -0,0 +1,1755 @@
+/* dsbgst.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b8 = 0.;
+static doublereal c_b9 = 1.;
+static integer c__1 = 1;
+static doublereal c_b20 = -1.;
+
+/* Subroutine */ int dsbgst_(char *vect, char *uplo, integer *n, integer *ka,
+ integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *
+ ldbb, doublereal *x, integer *ldx, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
+ i__2, i__3, i__4;
+ doublereal d__1;
+
+ /* Local variables */
+ integer i__, j, k, l, m;
+ doublereal t;
+ integer i0, i1, i2, j1, j2;
+ doublereal ra;
+ integer nr, nx, ka1, kb1;
+ doublereal ra1;
+ integer j1t, j2t;
+ doublereal bii;
+ integer kbt, nrt, inca;
+ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *), drot_(integer *, doublereal *, integer *, doublereal *
+, integer *, doublereal *, doublereal *), dscal_(integer *,
+ doublereal *, doublereal *, integer *);
+ extern logical lsame_(char *, char *);
+ logical upper, wantx;
+ extern /* Subroutine */ int dlar2v_(integer *, doublereal *, doublereal *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *),
+ dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *), dlartg_(doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *), xerbla_(
+ char *, integer *), dlargv_(integer *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *);
+ logical update;
+ extern /* Subroutine */ int dlartv_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSBGST reduces a real symmetric-definite banded generalized */
+/* eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
+/* such that C has the same bandwidth as A. */
+
+/* B must have been previously factorized as S**T*S by DPBSTF, using a */
+/* split Cholesky factorization. A is overwritten by C = X**T*A*X, where */
+/* X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the */
+/* bandwidth of A. */
+
+/* Arguments */
+/* ========= */
+
+/* VECT (input) CHARACTER*1 */
+/* = 'N': do not form the transformation matrix X; */
+/* = 'V': form X. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* KA (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
+
+/* KB (input) INTEGER */
+/* The number of superdiagonals of the matrix B if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
+
+/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix A, stored in the first ka+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
+
+/* On exit, the transformed matrix X**T*A*X, stored in the same */
+/* format as A. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KA+1. */
+
+/* BB (input) DOUBLE PRECISION array, dimension (LDBB,N) */
+/* The banded factor S from the split Cholesky factorization of */
+/* B, as returned by DPBSTF, stored in the first KB+1 rows of */
+/* the array. */
+
+/* LDBB (input) INTEGER */
+/* The leading dimension of the array BB. LDBB >= KB+1. */
+
+/* X (output) DOUBLE PRECISION array, dimension (LDX,N) */
+/* If VECT = 'V', the n-by-n matrix X. */
+/* If VECT = 'N', the array X is not referenced. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. */
+/* LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ bb_dim1 = *ldbb;
+ bb_offset = 1 + bb_dim1;
+ bb -= bb_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --work;
+
+ /* Function Body */
+ wantx = lsame_(vect, "V");
+ upper = lsame_(uplo, "U");
+ ka1 = *ka + 1;
+ kb1 = *kb + 1;
+ *info = 0;
+ if (! wantx && ! lsame_(vect, "N")) {
+ *info = -1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ka < 0) {
+ *info = -4;
+ } else if (*kb < 0 || *kb > *ka) {
+ *info = -5;
+ } else if (*ldab < *ka + 1) {
+ *info = -7;
+ } else if (*ldbb < *kb + 1) {
+ *info = -9;
+ } else if (*ldx < 1 || wantx && *ldx < max(1,*n)) {
+ *info = -11;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSBGST", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ inca = *ldab * ka1;
+
+/* Initialize X to the unit matrix, if needed */
+
+ if (wantx) {
+ dlaset_("Full", n, n, &c_b8, &c_b9, &x[x_offset], ldx);
+ }
+
+/* Set M to the splitting point m. It must be the same value as is */
+/* used in DPBSTF. The chosen value allows the arrays WORK and RWORK */
+/* to be of dimension (N). */
+
+ m = (*n + *kb) / 2;
+
+/* The routine works in two phases, corresponding to the two halves */
+/* of the split Cholesky factorization of B as S**T*S where */
+
+/* S = ( U ) */
+/* ( M L ) */
+
+/* with U upper triangular of order m, and L lower triangular of */
+/* order n-m. S has the same bandwidth as B. */
+
+/* S is treated as a product of elementary matrices: */
+
+/* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
+
+/* where S(i) is determined by the i-th row of S. */
+
+/* In phase 1, the index i takes the values n, n-1, ... , m+1; */
+/* in phase 2, it takes the values 1, 2, ... , m. */
+
+/* For each value of i, the current matrix A is updated by forming */
+/* inv(S(i))**T*A*inv(S(i)). This creates a triangular bulge outside */
+/* the band of A. The bulge is then pushed down toward the bottom of */
+/* A in phase 1, and up toward the top of A in phase 2, by applying */
+/* plane rotations. */
+
+/* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
+/* of them are linearly independent, so annihilating a bulge requires */
+/* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
+/* set of kb-1 rotations, and a 2nd set of kb rotations. */
+
+/* Wherever possible, rotations are generated and applied in vector */
+/* operations of length NR between the indices J1 and J2 (sometimes */
+/* replaced by modified values NRT, J1T or J2T). */
+
+/* The cosines and sines of the rotations are stored in the array */
+/* WORK. The cosines of the 1st set of rotations are stored in */
+/* elements n+2:n+m-kb-1 and the sines of the 1st set in elements */
+/* 2:m-kb-1; the cosines of the 2nd set are stored in elements */
+/* n+m-kb+1:2*n and the sines of the second set in elements m-kb+1:n. */
+
+/* The bulges are not formed explicitly; nonzero elements outside the */
+/* band are created only when they are required for generating new */
+/* rotations; they are stored in the array WORK, in positions where */
+/* they are later overwritten by the sines of the rotations which */
+/* annihilate them. */
+
+/* **************************** Phase 1 ***************************** */
+
+/* The logical structure of this phase is: */
+
+/* UPDATE = .TRUE. */
+/* DO I = N, M + 1, -1 */
+/* use S(i) to update A and create a new bulge */
+/* apply rotations to push all bulges KA positions downward */
+/* END DO */
+/* UPDATE = .FALSE. */
+/* DO I = M + KA + 1, N - 1 */
+/* apply rotations to push all bulges KA positions downward */
+/* END DO */
+
+/* To avoid duplicating code, the two loops are merged. */
+
+ update = TRUE_;
+ i__ = *n + 1;
+L10:
+ if (update) {
+ --i__;
+/* Computing MIN */
+ i__1 = *kb, i__2 = i__ - 1;
+ kbt = min(i__1,i__2);
+ i0 = i__ - 1;
+/* Computing MIN */
+ i__1 = *n, i__2 = i__ + *ka;
+ i1 = min(i__1,i__2);
+ i2 = i__ - kbt + ka1;
+ if (i__ < m + 1) {
+ update = FALSE_;
+ ++i__;
+ i0 = m;
+ if (*ka == 0) {
+ goto L480;
+ }
+ goto L10;
+ }
+ } else {
+ i__ += *ka;
+ if (i__ > *n - 1) {
+ goto L480;
+ }
+ }
+
+ if (upper) {
+
+/* Transform A, working with the upper triangle */
+
+ if (update) {
+
+/* Form inv(S(i))**T * A * inv(S(i)) */
+
+ bii = bb[kb1 + i__ * bb_dim1];
+ i__1 = i1;
+ for (j = i__; j <= i__1; ++j) {
+ ab[i__ - j + ka1 + j * ab_dim1] /= bii;
+/* L20: */
+ }
+/* Computing MAX */
+ i__1 = 1, i__2 = i__ - *ka;
+ i__3 = i__;
+ for (j = max(i__1,i__2); j <= i__3; ++j) {
+ ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
+/* L30: */
+ }
+ i__3 = i__ - 1;
+ for (k = i__ - kbt; k <= i__3; ++k) {
+ i__1 = k;
+ for (j = i__ - kbt; j <= i__1; ++j) {
+ ab[j - k + ka1 + k * ab_dim1] = ab[j - k + ka1 + k *
+ ab_dim1] - bb[j - i__ + kb1 + i__ * bb_dim1] * ab[
+ k - i__ + ka1 + i__ * ab_dim1] - bb[k - i__ + kb1
+ + i__ * bb_dim1] * ab[j - i__ + ka1 + i__ *
+ ab_dim1] + ab[ka1 + i__ * ab_dim1] * bb[j - i__ +
+ kb1 + i__ * bb_dim1] * bb[k - i__ + kb1 + i__ *
+ bb_dim1];
+/* L40: */
+ }
+/* Computing MAX */
+ i__1 = 1, i__2 = i__ - *ka;
+ i__4 = i__ - kbt - 1;
+ for (j = max(i__1,i__2); j <= i__4; ++j) {
+ ab[j - k + ka1 + k * ab_dim1] -= bb[k - i__ + kb1 + i__ *
+ bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
+/* L50: */
+ }
+/* L60: */
+ }
+ i__3 = i1;
+ for (j = i__; j <= i__3; ++j) {
+/* Computing MAX */
+ i__4 = j - *ka, i__1 = i__ - kbt;
+ i__2 = i__ - 1;
+ for (k = max(i__4,i__1); k <= i__2; ++k) {
+ ab[k - j + ka1 + j * ab_dim1] -= bb[k - i__ + kb1 + i__ *
+ bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
+/* L70: */
+ }
+/* L80: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by inv(S(i)) */
+
+ i__3 = *n - m;
+ d__1 = 1. / bii;
+ dscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
+ if (kbt > 0) {
+ i__3 = *n - m;
+ dger_(&i__3, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
+ c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
+ + 1 + (i__ - kbt) * x_dim1], ldx);
+ }
+ }
+
+/* store a(i,i1) in RA1 for use in next loop over K */
+
+ ra1 = ab[i__ - i1 + ka1 + i1 * ab_dim1];
+ }
+
+/* Generate and apply vectors of rotations to chase all the */
+/* existing bulges KA positions down toward the bottom of the */
+/* band */
+
+ i__3 = *kb - 1;
+ for (k = 1; k <= i__3; ++k) {
+ if (update) {
+
+/* Determine the rotations which would annihilate the bulge */
+/* which has in theory just been created */
+
+ if (i__ - k + *ka < *n && i__ - k > 1) {
+
+/* generate rotation to annihilate a(i,i-k+ka+1) */
+
+ dlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
+ work[*n + i__ - k + *ka - m], &work[i__ - k + *ka
+ - m], &ra);
+
+/* create nonzero element a(i-k,i-k+ka+1) outside the */
+/* band and store it in WORK(i-k) */
+
+ t = -bb[kb1 - k + i__ * bb_dim1] * ra1;
+ work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
+ i__ - k + *ka - m] * ab[(i__ - k + *ka) * ab_dim1
+ + 1];
+ ab[(i__ - k + *ka) * ab_dim1 + 1] = work[i__ - k + *ka -
+ m] * t + work[*n + i__ - k + *ka - m] * ab[(i__ -
+ k + *ka) * ab_dim1 + 1];
+ ra1 = ra;
+ }
+ }
+/* Computing MAX */
+ i__2 = 1, i__4 = k - i0 + 2;
+ j2 = i__ - k - 1 + max(i__2,i__4) * ka1;
+ nr = (*n - j2 + *ka) / ka1;
+ j1 = j2 + (nr - 1) * ka1;
+ if (update) {
+/* Computing MAX */
+ i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
+ j2t = max(i__2,i__4);
+ } else {
+ j2t = j2;
+ }
+ nrt = (*n - j2t + *ka) / ka1;
+ i__2 = j1;
+ i__4 = ka1;
+ for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
+
+/* create nonzero element a(j-ka,j+1) outside the band */
+/* and store it in WORK(j-m) */
+
+ work[j - m] *= ab[(j + 1) * ab_dim1 + 1];
+ ab[(j + 1) * ab_dim1 + 1] = work[*n + j - m] * ab[(j + 1) *
+ ab_dim1 + 1];
+/* L90: */
+ }
+
+/* generate rotations in 1st set to annihilate elements which */
+/* have been created outside the band */
+
+ if (nrt > 0) {
+ dlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
+ ka1, &work[*n + j2t - m], &ka1);
+ }
+ if (nr > 0) {
+
+/* apply rotations in 1st set from the right */
+
+ i__4 = *ka - 1;
+ for (l = 1; l <= i__4; ++l) {
+ dlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
+ - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2 -
+ m], &work[j2 - m], &ka1);
+/* L100: */
+ }
+
+/* apply rotations in 1st set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
+ ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
+ *n + j2 - m], &work[j2 - m], &ka1);
+
+ }
+
+/* start applying rotations in 1st set from the left */
+
+ i__4 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__4; --l) {
+ nrt = (*n - j2 + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
+ ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
+ work[*n + j2 - m], &work[j2 - m], &ka1);
+ }
+/* L110: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 1st set */
+
+ i__4 = j1;
+ i__2 = ka1;
+ for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
+ i__1 = *n - m;
+ drot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
+ + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
+ - m]);
+/* L120: */
+ }
+ }
+/* L130: */
+ }
+
+ if (update) {
+ if (i2 <= *n && kbt > 0) {
+
+/* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
+/* band and store it in WORK(i-kbt) */
+
+ work[i__ - kbt] = -bb[kb1 - kbt + i__ * bb_dim1] * ra1;
+ }
+ }
+
+ for (k = *kb; k >= 1; --k) {
+ if (update) {
+/* Computing MAX */
+ i__3 = 2, i__2 = k - i0 + 1;
+ j2 = i__ - k - 1 + max(i__3,i__2) * ka1;
+ } else {
+/* Computing MAX */
+ i__3 = 1, i__2 = k - i0 + 1;
+ j2 = i__ - k - 1 + max(i__3,i__2) * ka1;
+ }
+
+/* finish applying rotations in 2nd set from the left */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (*n - j2 + *ka + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
+ l + 1 + (j2 - l + 1) * ab_dim1], &inca, &work[*n
+ + j2 - *ka], &work[j2 - *ka], &ka1);
+ }
+/* L140: */
+ }
+ nr = (*n - j2 + *ka) / ka1;
+ j1 = j2 + (nr - 1) * ka1;
+ i__3 = j2;
+ i__2 = -ka1;
+ for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
+ work[j] = work[j - *ka];
+ work[*n + j] = work[*n + j - *ka];
+/* L150: */
+ }
+ i__2 = j1;
+ i__3 = ka1;
+ for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
+
+/* create nonzero element a(j-ka,j+1) outside the band */
+/* and store it in WORK(j) */
+
+ work[j] *= ab[(j + 1) * ab_dim1 + 1];
+ ab[(j + 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + 1) *
+ ab_dim1 + 1];
+/* L160: */
+ }
+ if (update) {
+ if (i__ - k < *n - *ka && k <= kbt) {
+ work[i__ - k + *ka] = work[i__ - k];
+ }
+ }
+/* L170: */
+ }
+
+ for (k = *kb; k >= 1; --k) {
+/* Computing MAX */
+ i__3 = 1, i__2 = k - i0 + 1;
+ j2 = i__ - k - 1 + max(i__3,i__2) * ka1;
+ nr = (*n - j2 + *ka) / ka1;
+ j1 = j2 + (nr - 1) * ka1;
+ if (nr > 0) {
+
+/* generate rotations in 2nd set to annihilate elements */
+/* which have been created outside the band */
+
+ dlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
+ work[*n + j2], &ka1);
+
+/* apply rotations in 2nd set from the right */
+
+ i__3 = *ka - 1;
+ for (l = 1; l <= i__3; ++l) {
+ dlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
+ - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2],
+ &work[j2], &ka1);
+/* L180: */
+ }
+
+/* apply rotations in 2nd set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
+ ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[
+ *n + j2], &work[j2], &ka1);
+
+ }
+
+/* start applying rotations in 2nd set from the left */
+
+ i__3 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__3; --l) {
+ nrt = (*n - j2 + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
+ ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
+ work[*n + j2], &work[j2], &ka1);
+ }
+/* L190: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 2nd set */
+
+ i__3 = j1;
+ i__2 = ka1;
+ for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
+ i__4 = *n - m;
+ drot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
+ + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+
+ i__2 = *kb - 1;
+ for (k = 1; k <= i__2; ++k) {
+/* Computing MAX */
+ i__3 = 1, i__4 = k - i0 + 2;
+ j2 = i__ - k - 1 + max(i__3,i__4) * ka1;
+
+/* finish applying rotations in 1st set from the left */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (*n - j2 + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
+ ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
+ work[*n + j2 - m], &work[j2 - m], &ka1);
+ }
+/* L220: */
+ }
+/* L230: */
+ }
+
+ if (*kb > 1) {
+ i__2 = i__ - *kb + (*ka << 1) + 1;
+ for (j = *n - 1; j >= i__2; --j) {
+ work[*n + j - m] = work[*n + j - *ka - m];
+ work[j - m] = work[j - *ka - m];
+/* L240: */
+ }
+ }
+
+ } else {
+
+/* Transform A, working with the lower triangle */
+
+ if (update) {
+
+/* Form inv(S(i))**T * A * inv(S(i)) */
+
+ bii = bb[i__ * bb_dim1 + 1];
+ i__2 = i1;
+ for (j = i__; j <= i__2; ++j) {
+ ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
+/* L250: */
+ }
+/* Computing MAX */
+ i__2 = 1, i__3 = i__ - *ka;
+ i__4 = i__;
+ for (j = max(i__2,i__3); j <= i__4; ++j) {
+ ab[i__ - j + 1 + j * ab_dim1] /= bii;
+/* L260: */
+ }
+ i__4 = i__ - 1;
+ for (k = i__ - kbt; k <= i__4; ++k) {
+ i__2 = k;
+ for (j = i__ - kbt; j <= i__2; ++j) {
+ ab[k - j + 1 + j * ab_dim1] = ab[k - j + 1 + j * ab_dim1]
+ - bb[i__ - j + 1 + j * bb_dim1] * ab[i__ - k + 1
+ + k * ab_dim1] - bb[i__ - k + 1 + k * bb_dim1] *
+ ab[i__ - j + 1 + j * ab_dim1] + ab[i__ * ab_dim1
+ + 1] * bb[i__ - j + 1 + j * bb_dim1] * bb[i__ - k
+ + 1 + k * bb_dim1];
+/* L270: */
+ }
+/* Computing MAX */
+ i__2 = 1, i__3 = i__ - *ka;
+ i__1 = i__ - kbt - 1;
+ for (j = max(i__2,i__3); j <= i__1; ++j) {
+ ab[k - j + 1 + j * ab_dim1] -= bb[i__ - k + 1 + k *
+ bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
+/* L280: */
+ }
+/* L290: */
+ }
+ i__4 = i1;
+ for (j = i__; j <= i__4; ++j) {
+/* Computing MAX */
+ i__1 = j - *ka, i__2 = i__ - kbt;
+ i__3 = i__ - 1;
+ for (k = max(i__1,i__2); k <= i__3; ++k) {
+ ab[j - k + 1 + k * ab_dim1] -= bb[i__ - k + 1 + k *
+ bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
+/* L300: */
+ }
+/* L310: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by inv(S(i)) */
+
+ i__4 = *n - m;
+ d__1 = 1. / bii;
+ dscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
+ if (kbt > 0) {
+ i__4 = *n - m;
+ i__3 = *ldbb - 1;
+ dger_(&i__4, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], &
+ c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
+ &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
+ }
+ }
+
+/* store a(i1,i) in RA1 for use in next loop over K */
+
+ ra1 = ab[i1 - i__ + 1 + i__ * ab_dim1];
+ }
+
+/* Generate and apply vectors of rotations to chase all the */
+/* existing bulges KA positions down toward the bottom of the */
+/* band */
+
+ i__4 = *kb - 1;
+ for (k = 1; k <= i__4; ++k) {
+ if (update) {
+
+/* Determine the rotations which would annihilate the bulge */
+/* which has in theory just been created */
+
+ if (i__ - k + *ka < *n && i__ - k > 1) {
+
+/* generate rotation to annihilate a(i-k+ka+1,i) */
+
+ dlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &work[*n +
+ i__ - k + *ka - m], &work[i__ - k + *ka - m], &ra)
+ ;
+
+/* create nonzero element a(i-k+ka+1,i-k) outside the */
+/* band and store it in WORK(i-k) */
+
+ t = -bb[k + 1 + (i__ - k) * bb_dim1] * ra1;
+ work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[
+ i__ - k + *ka - m] * ab[ka1 + (i__ - k) * ab_dim1]
+ ;
+ ab[ka1 + (i__ - k) * ab_dim1] = work[i__ - k + *ka - m] *
+ t + work[*n + i__ - k + *ka - m] * ab[ka1 + (i__
+ - k) * ab_dim1];
+ ra1 = ra;
+ }
+ }
+/* Computing MAX */
+ i__3 = 1, i__1 = k - i0 + 2;
+ j2 = i__ - k - 1 + max(i__3,i__1) * ka1;
+ nr = (*n - j2 + *ka) / ka1;
+ j1 = j2 + (nr - 1) * ka1;
+ if (update) {
+/* Computing MAX */
+ i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
+ j2t = max(i__3,i__1);
+ } else {
+ j2t = j2;
+ }
+ nrt = (*n - j2t + *ka) / ka1;
+ i__3 = j1;
+ i__1 = ka1;
+ for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
+
+/* create nonzero element a(j+1,j-ka) outside the band */
+/* and store it in WORK(j-m) */
+
+ work[j - m] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
+ ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j - m] * ab[ka1
+ + (j - *ka + 1) * ab_dim1];
+/* L320: */
+ }
+
+/* generate rotations in 1st set to annihilate elements which */
+/* have been created outside the band */
+
+ if (nrt > 0) {
+ dlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
+ j2t - m], &ka1, &work[*n + j2t - m], &ka1);
+ }
+ if (nr > 0) {
+
+/* apply rotations in 1st set from the left */
+
+ i__1 = *ka - 1;
+ for (l = 1; l <= i__1; ++l) {
+ dlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
+ l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2
+ - m], &work[j2 - m], &ka1);
+/* L330: */
+ }
+
+/* apply rotations in 1st set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
+ 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2 - m],
+ &work[j2 - m], &ka1);
+
+ }
+
+/* start applying rotations in 1st set from the right */
+
+ i__1 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__1; --l) {
+ nrt = (*n - j2 + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
+ ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
+ j2 - m], &work[j2 - m], &ka1);
+ }
+/* L340: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 1st set */
+
+ i__1 = j1;
+ i__3 = ka1;
+ for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
+ i__2 = *n - m;
+ drot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
+ + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j
+ - m]);
+/* L350: */
+ }
+ }
+/* L360: */
+ }
+
+ if (update) {
+ if (i2 <= *n && kbt > 0) {
+
+/* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
+/* band and store it in WORK(i-kbt) */
+
+ work[i__ - kbt] = -bb[kbt + 1 + (i__ - kbt) * bb_dim1] * ra1;
+ }
+ }
+
+ for (k = *kb; k >= 1; --k) {
+ if (update) {
+/* Computing MAX */
+ i__4 = 2, i__3 = k - i0 + 1;
+ j2 = i__ - k - 1 + max(i__4,i__3) * ka1;
+ } else {
+/* Computing MAX */
+ i__4 = 1, i__3 = k - i0 + 1;
+ j2 = i__ - k - 1 + max(i__4,i__3) * ka1;
+ }
+
+/* finish applying rotations in 2nd set from the right */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (*n - j2 + *ka + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
+ inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
+ inca, &work[*n + j2 - *ka], &work[j2 - *ka], &ka1)
+ ;
+ }
+/* L370: */
+ }
+ nr = (*n - j2 + *ka) / ka1;
+ j1 = j2 + (nr - 1) * ka1;
+ i__4 = j2;
+ i__3 = -ka1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
+ work[j] = work[j - *ka];
+ work[*n + j] = work[*n + j - *ka];
+/* L380: */
+ }
+ i__3 = j1;
+ i__4 = ka1;
+ for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+
+/* create nonzero element a(j+1,j-ka) outside the band */
+/* and store it in WORK(j) */
+
+ work[j] *= ab[ka1 + (j - *ka + 1) * ab_dim1];
+ ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j] * ab[ka1 + (
+ j - *ka + 1) * ab_dim1];
+/* L390: */
+ }
+ if (update) {
+ if (i__ - k < *n - *ka && k <= kbt) {
+ work[i__ - k + *ka] = work[i__ - k];
+ }
+ }
+/* L400: */
+ }
+
+ for (k = *kb; k >= 1; --k) {
+/* Computing MAX */
+ i__4 = 1, i__3 = k - i0 + 1;
+ j2 = i__ - k - 1 + max(i__4,i__3) * ka1;
+ nr = (*n - j2 + *ka) / ka1;
+ j1 = j2 + (nr - 1) * ka1;
+ if (nr > 0) {
+
+/* generate rotations in 2nd set to annihilate elements */
+/* which have been created outside the band */
+
+ dlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
+, &ka1, &work[*n + j2], &ka1);
+
+/* apply rotations in 2nd set from the left */
+
+ i__4 = *ka - 1;
+ for (l = 1; l <= i__4; ++l) {
+ dlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
+ l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2]
+, &work[j2], &ka1);
+/* L410: */
+ }
+
+/* apply rotations in 2nd set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
+ 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2], &
+ work[j2], &ka1);
+
+ }
+
+/* start applying rotations in 2nd set from the right */
+
+ i__4 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__4; --l) {
+ nrt = (*n - j2 + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
+ ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
+ j2], &work[j2], &ka1);
+ }
+/* L420: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 2nd set */
+
+ i__4 = j1;
+ i__3 = ka1;
+ for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
+ i__1 = *n - m;
+ drot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
+ + 1) * x_dim1], &c__1, &work[*n + j], &work[j]);
+/* L430: */
+ }
+ }
+/* L440: */
+ }
+
+ i__3 = *kb - 1;
+ for (k = 1; k <= i__3; ++k) {
+/* Computing MAX */
+ i__4 = 1, i__1 = k - i0 + 2;
+ j2 = i__ - k - 1 + max(i__4,i__1) * ka1;
+
+/* finish applying rotations in 1st set from the right */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (*n - j2 + l) / ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
+ ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n +
+ j2 - m], &work[j2 - m], &ka1);
+ }
+/* L450: */
+ }
+/* L460: */
+ }
+
+ if (*kb > 1) {
+ i__3 = i__ - *kb + (*ka << 1) + 1;
+ for (j = *n - 1; j >= i__3; --j) {
+ work[*n + j - m] = work[*n + j - *ka - m];
+ work[j - m] = work[j - *ka - m];
+/* L470: */
+ }
+ }
+
+ }
+
+ goto L10;
+
+L480:
+
+/* **************************** Phase 2 ***************************** */
+
+/* The logical structure of this phase is: */
+
+/* UPDATE = .TRUE. */
+/* DO I = 1, M */
+/* use S(i) to update A and create a new bulge */
+/* apply rotations to push all bulges KA positions upward */
+/* END DO */
+/* UPDATE = .FALSE. */
+/* DO I = M - KA - 1, 2, -1 */
+/* apply rotations to push all bulges KA positions upward */
+/* END DO */
+
+/* To avoid duplicating code, the two loops are merged. */
+
+ update = TRUE_;
+ i__ = 0;
+L490:
+ if (update) {
+ ++i__;
+/* Computing MIN */
+ i__3 = *kb, i__4 = m - i__;
+ kbt = min(i__3,i__4);
+ i0 = i__ + 1;
+/* Computing MAX */
+ i__3 = 1, i__4 = i__ - *ka;
+ i1 = max(i__3,i__4);
+ i2 = i__ + kbt - ka1;
+ if (i__ > m) {
+ update = FALSE_;
+ --i__;
+ i0 = m + 1;
+ if (*ka == 0) {
+ return 0;
+ }
+ goto L490;
+ }
+ } else {
+ i__ -= *ka;
+ if (i__ < 2) {
+ return 0;
+ }
+ }
+
+ if (i__ < m - kbt) {
+ nx = m;
+ } else {
+ nx = *n;
+ }
+
+ if (upper) {
+
+/* Transform A, working with the upper triangle */
+
+ if (update) {
+
+/* Form inv(S(i))**T * A * inv(S(i)) */
+
+ bii = bb[kb1 + i__ * bb_dim1];
+ i__3 = i__;
+ for (j = i1; j <= i__3; ++j) {
+ ab[j - i__ + ka1 + i__ * ab_dim1] /= bii;
+/* L500: */
+ }
+/* Computing MIN */
+ i__4 = *n, i__1 = i__ + *ka;
+ i__3 = min(i__4,i__1);
+ for (j = i__; j <= i__3; ++j) {
+ ab[i__ - j + ka1 + j * ab_dim1] /= bii;
+/* L510: */
+ }
+ i__3 = i__ + kbt;
+ for (k = i__ + 1; k <= i__3; ++k) {
+ i__4 = i__ + kbt;
+ for (j = k; j <= i__4; ++j) {
+ ab[k - j + ka1 + j * ab_dim1] = ab[k - j + ka1 + j *
+ ab_dim1] - bb[i__ - j + kb1 + j * bb_dim1] * ab[
+ i__ - k + ka1 + k * ab_dim1] - bb[i__ - k + kb1 +
+ k * bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1] +
+ ab[ka1 + i__ * ab_dim1] * bb[i__ - j + kb1 + j *
+ bb_dim1] * bb[i__ - k + kb1 + k * bb_dim1];
+/* L520: */
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = i__ + *ka;
+ i__4 = min(i__1,i__2);
+ for (j = i__ + kbt + 1; j <= i__4; ++j) {
+ ab[k - j + ka1 + j * ab_dim1] -= bb[i__ - k + kb1 + k *
+ bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1];
+/* L530: */
+ }
+/* L540: */
+ }
+ i__3 = i__;
+ for (j = i1; j <= i__3; ++j) {
+/* Computing MIN */
+ i__1 = j + *ka, i__2 = i__ + kbt;
+ i__4 = min(i__1,i__2);
+ for (k = i__ + 1; k <= i__4; ++k) {
+ ab[j - k + ka1 + k * ab_dim1] -= bb[i__ - k + kb1 + k *
+ bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1];
+/* L550: */
+ }
+/* L560: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by inv(S(i)) */
+
+ d__1 = 1. / bii;
+ dscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
+ if (kbt > 0) {
+ i__3 = *ldbb - 1;
+ dger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
+ *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
+ x_dim1 + 1], ldx);
+ }
+ }
+
+/* store a(i1,i) in RA1 for use in next loop over K */
+
+ ra1 = ab[i1 - i__ + ka1 + i__ * ab_dim1];
+ }
+
+/* Generate and apply vectors of rotations to chase all the */
+/* existing bulges KA positions up toward the top of the band */
+
+ i__3 = *kb - 1;
+ for (k = 1; k <= i__3; ++k) {
+ if (update) {
+
+/* Determine the rotations which would annihilate the bulge */
+/* which has in theory just been created */
+
+ if (i__ + k - ka1 > 0 && i__ + k < m) {
+
+/* generate rotation to annihilate a(i+k-ka-1,i) */
+
+ dlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &work[*n + i__
+ + k - *ka], &work[i__ + k - *ka], &ra);
+
+/* create nonzero element a(i+k-ka-1,i+k) outside the */
+/* band and store it in WORK(m-kb+i+k) */
+
+ t = -bb[kb1 - k + (i__ + k) * bb_dim1] * ra1;
+ work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
+ work[i__ + k - *ka] * ab[(i__ + k) * ab_dim1 + 1];
+ ab[(i__ + k) * ab_dim1 + 1] = work[i__ + k - *ka] * t +
+ work[*n + i__ + k - *ka] * ab[(i__ + k) * ab_dim1
+ + 1];
+ ra1 = ra;
+ }
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = k + i0 - m + 1;
+ j2 = i__ + k + 1 - max(i__4,i__1) * ka1;
+ nr = (j2 + *ka - 1) / ka1;
+ j1 = j2 - (nr - 1) * ka1;
+ if (update) {
+/* Computing MIN */
+ i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
+ j2t = min(i__4,i__1);
+ } else {
+ j2t = j2;
+ }
+ nrt = (j2t + *ka - 1) / ka1;
+ i__4 = j2t;
+ i__1 = ka1;
+ for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
+
+/* create nonzero element a(j-1,j+ka) outside the band */
+/* and store it in WORK(j) */
+
+ work[j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
+ ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + *ka
+ - 1) * ab_dim1 + 1];
+/* L570: */
+ }
+
+/* generate rotations in 1st set to annihilate elements which */
+/* have been created outside the band */
+
+ if (nrt > 0) {
+ dlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
+ &ka1, &work[*n + j1], &ka1);
+ }
+ if (nr > 0) {
+
+/* apply rotations in 1st set from the left */
+
+ i__1 = *ka - 1;
+ for (l = 1; l <= i__1; ++l) {
+ dlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
+ ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
+ + j1], &work[j1], &ka1);
+/* L580: */
+ }
+
+/* apply rotations in 1st set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
+ ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
+ j1], &work[j1], &ka1);
+
+ }
+
+/* start applying rotations in 1st set from the right */
+
+ i__1 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__1; --l) {
+ nrt = (j2 + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
+ j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
+ work[j1t], &ka1);
+ }
+/* L590: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 1st set */
+
+ i__1 = j2;
+ i__4 = ka1;
+ for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
+ drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
+ + 1], &c__1, &work[*n + j], &work[j]);
+/* L600: */
+ }
+ }
+/* L610: */
+ }
+
+ if (update) {
+ if (i2 > 0 && kbt > 0) {
+
+/* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
+/* band and store it in WORK(m-kb+i+kbt) */
+
+ work[m - *kb + i__ + kbt] = -bb[kb1 - kbt + (i__ + kbt) *
+ bb_dim1] * ra1;
+ }
+ }
+
+ for (k = *kb; k >= 1; --k) {
+ if (update) {
+/* Computing MAX */
+ i__3 = 2, i__4 = k + i0 - m;
+ j2 = i__ + k + 1 - max(i__3,i__4) * ka1;
+ } else {
+/* Computing MAX */
+ i__3 = 1, i__4 = k + i0 - m;
+ j2 = i__ + k + 1 - max(i__3,i__4) * ka1;
+ }
+
+/* finish applying rotations in 2nd set from the right */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (j2 + *ka + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
+ l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &work[*
+ n + m - *kb + j1t + *ka], &work[m - *kb + j1t + *
+ ka], &ka1);
+ }
+/* L620: */
+ }
+ nr = (j2 + *ka - 1) / ka1;
+ j1 = j2 - (nr - 1) * ka1;
+ i__3 = j2;
+ i__4 = ka1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+ work[m - *kb + j] = work[m - *kb + j + *ka];
+ work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
+/* L630: */
+ }
+ i__4 = j2;
+ i__3 = ka1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
+
+/* create nonzero element a(j-1,j+ka) outside the band */
+/* and store it in WORK(m-kb+j) */
+
+ work[m - *kb + j] *= ab[(j + *ka - 1) * ab_dim1 + 1];
+ ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + m - *kb + j] * ab[
+ (j + *ka - 1) * ab_dim1 + 1];
+/* L640: */
+ }
+ if (update) {
+ if (i__ + k > ka1 && k <= kbt) {
+ work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
+ }
+ }
+/* L650: */
+ }
+
+ for (k = *kb; k >= 1; --k) {
+/* Computing MAX */
+ i__3 = 1, i__4 = k + i0 - m;
+ j2 = i__ + k + 1 - max(i__3,i__4) * ka1;
+ nr = (j2 + *ka - 1) / ka1;
+ j1 = j2 - (nr - 1) * ka1;
+ if (nr > 0) {
+
+/* generate rotations in 2nd set to annihilate elements */
+/* which have been created outside the band */
+
+ dlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
+ kb + j1], &ka1, &work[*n + m - *kb + j1], &ka1);
+
+/* apply rotations in 2nd set from the left */
+
+ i__3 = *ka - 1;
+ for (l = 1; l <= i__3; ++l) {
+ dlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
+ ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n
+ + m - *kb + j1], &work[m - *kb + j1], &ka1);
+/* L660: */
+ }
+
+/* apply rotations in 2nd set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
+ ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n +
+ m - *kb + j1], &work[m - *kb + j1], &ka1);
+
+ }
+
+/* start applying rotations in 2nd set from the right */
+
+ i__3 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__3; --l) {
+ nrt = (j2 + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
+ j1t - 1) * ab_dim1], &inca, &work[*n + m - *kb +
+ j1t], &work[m - *kb + j1t], &ka1);
+ }
+/* L670: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 2nd set */
+
+ i__3 = j2;
+ i__4 = ka1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+ drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
+ + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
+ kb + j]);
+/* L680: */
+ }
+ }
+/* L690: */
+ }
+
+ i__4 = *kb - 1;
+ for (k = 1; k <= i__4; ++k) {
+/* Computing MAX */
+ i__3 = 1, i__1 = k + i0 - m + 1;
+ j2 = i__ + k + 1 - max(i__3,i__1) * ka1;
+
+/* finish applying rotations in 1st set from the right */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (j2 + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
+ j1t - 1) * ab_dim1], &inca, &work[*n + j1t], &
+ work[j1t], &ka1);
+ }
+/* L700: */
+ }
+/* L710: */
+ }
+
+ if (*kb > 1) {
+/* Computing MIN */
+ i__3 = i__ + *kb;
+ i__4 = min(i__3,m) - (*ka << 1) - 1;
+ for (j = 2; j <= i__4; ++j) {
+ work[*n + j] = work[*n + j + *ka];
+ work[j] = work[j + *ka];
+/* L720: */
+ }
+ }
+
+ } else {
+
+/* Transform A, working with the lower triangle */
+
+ if (update) {
+
+/* Form inv(S(i))**T * A * inv(S(i)) */
+
+ bii = bb[i__ * bb_dim1 + 1];
+ i__4 = i__;
+ for (j = i1; j <= i__4; ++j) {
+ ab[i__ - j + 1 + j * ab_dim1] /= bii;
+/* L730: */
+ }
+/* Computing MIN */
+ i__3 = *n, i__1 = i__ + *ka;
+ i__4 = min(i__3,i__1);
+ for (j = i__; j <= i__4; ++j) {
+ ab[j - i__ + 1 + i__ * ab_dim1] /= bii;
+/* L740: */
+ }
+ i__4 = i__ + kbt;
+ for (k = i__ + 1; k <= i__4; ++k) {
+ i__3 = i__ + kbt;
+ for (j = k; j <= i__3; ++j) {
+ ab[j - k + 1 + k * ab_dim1] = ab[j - k + 1 + k * ab_dim1]
+ - bb[j - i__ + 1 + i__ * bb_dim1] * ab[k - i__ +
+ 1 + i__ * ab_dim1] - bb[k - i__ + 1 + i__ *
+ bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1] + ab[
+ i__ * ab_dim1 + 1] * bb[j - i__ + 1 + i__ *
+ bb_dim1] * bb[k - i__ + 1 + i__ * bb_dim1];
+/* L750: */
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = i__ + *ka;
+ i__3 = min(i__1,i__2);
+ for (j = i__ + kbt + 1; j <= i__3; ++j) {
+ ab[j - k + 1 + k * ab_dim1] -= bb[k - i__ + 1 + i__ *
+ bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1];
+/* L760: */
+ }
+/* L770: */
+ }
+ i__4 = i__;
+ for (j = i1; j <= i__4; ++j) {
+/* Computing MIN */
+ i__1 = j + *ka, i__2 = i__ + kbt;
+ i__3 = min(i__1,i__2);
+ for (k = i__ + 1; k <= i__3; ++k) {
+ ab[k - j + 1 + j * ab_dim1] -= bb[k - i__ + 1 + i__ *
+ bb_dim1] * ab[i__ - j + 1 + j * ab_dim1];
+/* L780: */
+ }
+/* L790: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by inv(S(i)) */
+
+ d__1 = 1. / bii;
+ dscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
+ if (kbt > 0) {
+ dger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[
+ i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
+ + 1], ldx);
+ }
+ }
+
+/* store a(i,i1) in RA1 for use in next loop over K */
+
+ ra1 = ab[i__ - i1 + 1 + i1 * ab_dim1];
+ }
+
+/* Generate and apply vectors of rotations to chase all the */
+/* existing bulges KA positions up toward the top of the band */
+
+ i__4 = *kb - 1;
+ for (k = 1; k <= i__4; ++k) {
+ if (update) {
+
+/* Determine the rotations which would annihilate the bulge */
+/* which has in theory just been created */
+
+ if (i__ + k - ka1 > 0 && i__ + k < m) {
+
+/* generate rotation to annihilate a(i,i+k-ka-1) */
+
+ dlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
+ work[*n + i__ + k - *ka], &work[i__ + k - *ka], &
+ ra);
+
+/* create nonzero element a(i+k,i+k-ka-1) outside the */
+/* band and store it in WORK(m-kb+i+k) */
+
+ t = -bb[k + 1 + i__ * bb_dim1] * ra1;
+ work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t -
+ work[i__ + k - *ka] * ab[ka1 + (i__ + k - *ka) *
+ ab_dim1];
+ ab[ka1 + (i__ + k - *ka) * ab_dim1] = work[i__ + k - *ka]
+ * t + work[*n + i__ + k - *ka] * ab[ka1 + (i__ +
+ k - *ka) * ab_dim1];
+ ra1 = ra;
+ }
+ }
+/* Computing MAX */
+ i__3 = 1, i__1 = k + i0 - m + 1;
+ j2 = i__ + k + 1 - max(i__3,i__1) * ka1;
+ nr = (j2 + *ka - 1) / ka1;
+ j1 = j2 - (nr - 1) * ka1;
+ if (update) {
+/* Computing MIN */
+ i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
+ j2t = min(i__3,i__1);
+ } else {
+ j2t = j2;
+ }
+ nrt = (j2t + *ka - 1) / ka1;
+ i__3 = j2t;
+ i__1 = ka1;
+ for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
+
+/* create nonzero element a(j+ka,j-1) outside the band */
+/* and store it in WORK(j) */
+
+ work[j] *= ab[ka1 + (j - 1) * ab_dim1];
+ ab[ka1 + (j - 1) * ab_dim1] = work[*n + j] * ab[ka1 + (j - 1)
+ * ab_dim1];
+/* L800: */
+ }
+
+/* generate rotations in 1st set to annihilate elements which */
+/* have been created outside the band */
+
+ if (nrt > 0) {
+ dlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
+ &work[*n + j1], &ka1);
+ }
+ if (nr > 0) {
+
+/* apply rotations in 1st set from the right */
+
+ i__1 = *ka - 1;
+ for (l = 1; l <= i__1; ++l) {
+ dlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
+ + (j1 - 1) * ab_dim1], &inca, &work[*n + j1], &
+ work[j1], &ka1);
+/* L810: */
+ }
+
+/* apply rotations in 1st set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
+ 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + j1]
+, &work[j1], &ka1);
+
+ }
+
+/* start applying rotations in 1st set from the left */
+
+ i__1 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__1; --l) {
+ nrt = (j2 + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
+, &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
+ &inca, &work[*n + j1t], &work[j1t], &ka1);
+ }
+/* L820: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 1st set */
+
+ i__1 = j2;
+ i__3 = ka1;
+ for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
+ drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
+ + 1], &c__1, &work[*n + j], &work[j]);
+/* L830: */
+ }
+ }
+/* L840: */
+ }
+
+ if (update) {
+ if (i2 > 0 && kbt > 0) {
+
+/* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
+/* band and store it in WORK(m-kb+i+kbt) */
+
+ work[m - *kb + i__ + kbt] = -bb[kbt + 1 + i__ * bb_dim1] *
+ ra1;
+ }
+ }
+
+ for (k = *kb; k >= 1; --k) {
+ if (update) {
+/* Computing MAX */
+ i__4 = 2, i__3 = k + i0 - m;
+ j2 = i__ + k + 1 - max(i__4,i__3) * ka1;
+ } else {
+/* Computing MAX */
+ i__4 = 1, i__3 = k + i0 - m;
+ j2 = i__ + k + 1 - max(i__4,i__3) * ka1;
+ }
+
+/* finish applying rotations in 2nd set from the left */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (j2 + *ka + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
+ &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
+ inca, &work[*n + m - *kb + j1t + *ka], &work[m - *
+ kb + j1t + *ka], &ka1);
+ }
+/* L850: */
+ }
+ nr = (j2 + *ka - 1) / ka1;
+ j1 = j2 - (nr - 1) * ka1;
+ i__4 = j2;
+ i__3 = ka1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
+ work[m - *kb + j] = work[m - *kb + j + *ka];
+ work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka];
+/* L860: */
+ }
+ i__3 = j2;
+ i__4 = ka1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+
+/* create nonzero element a(j+ka,j-1) outside the band */
+/* and store it in WORK(m-kb+j) */
+
+ work[m - *kb + j] *= ab[ka1 + (j - 1) * ab_dim1];
+ ab[ka1 + (j - 1) * ab_dim1] = work[*n + m - *kb + j] * ab[ka1
+ + (j - 1) * ab_dim1];
+/* L870: */
+ }
+ if (update) {
+ if (i__ + k > ka1 && k <= kbt) {
+ work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k];
+ }
+ }
+/* L880: */
+ }
+
+ for (k = *kb; k >= 1; --k) {
+/* Computing MAX */
+ i__4 = 1, i__3 = k + i0 - m;
+ j2 = i__ + k + 1 - max(i__4,i__3) * ka1;
+ nr = (j2 + *ka - 1) / ka1;
+ j1 = j2 - (nr - 1) * ka1;
+ if (nr > 0) {
+
+/* generate rotations in 2nd set to annihilate elements */
+/* which have been created outside the band */
+
+ dlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
+ j1], &ka1, &work[*n + m - *kb + j1], &ka1);
+
+/* apply rotations in 2nd set from the right */
+
+ i__4 = *ka - 1;
+ for (l = 1; l <= i__4; ++l) {
+ dlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
+ + (j1 - 1) * ab_dim1], &inca, &work[*n + m - *kb
+ + j1], &work[m - *kb + j1], &ka1);
+/* L890: */
+ }
+
+/* apply rotations in 2nd set from both sides to diagonal */
+/* blocks */
+
+ dlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
+ 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + m
+ - *kb + j1], &work[m - *kb + j1], &ka1);
+
+ }
+
+/* start applying rotations in 2nd set from the left */
+
+ i__4 = *kb - k + 1;
+ for (l = *ka - 1; l >= i__4; --l) {
+ nrt = (j2 + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
+, &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
+ &inca, &work[*n + m - *kb + j1t], &work[m - *kb
+ + j1t], &ka1);
+ }
+/* L900: */
+ }
+
+ if (wantx) {
+
+/* post-multiply X by product of rotations in 2nd set */
+
+ i__4 = j2;
+ i__3 = ka1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
+ drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
+ + 1], &c__1, &work[*n + m - *kb + j], &work[m - *
+ kb + j]);
+/* L910: */
+ }
+ }
+/* L920: */
+ }
+
+ i__3 = *kb - 1;
+ for (k = 1; k <= i__3; ++k) {
+/* Computing MAX */
+ i__4 = 1, i__1 = k + i0 - m + 1;
+ j2 = i__ + k + 1 - max(i__4,i__1) * ka1;
+
+/* finish applying rotations in 1st set from the left */
+
+ for (l = *kb - k; l >= 1; --l) {
+ nrt = (j2 + l - 1) / ka1;
+ j1t = j2 - (nrt - 1) * ka1;
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
+, &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
+ &inca, &work[*n + j1t], &work[j1t], &ka1);
+ }
+/* L930: */
+ }
+/* L940: */
+ }
+
+ if (*kb > 1) {
+/* Computing MIN */
+ i__4 = i__ + *kb;
+ i__3 = min(i__4,m) - (*ka << 1) - 1;
+ for (j = 2; j <= i__3; ++j) {
+ work[*n + j] = work[*n + j + *ka];
+ work[j] = work[j + *ka];
+/* L950: */
+ }
+ }
+
+ }
+
+ goto L490;
+
+/* End of DSBGST */
+
+} /* dsbgst_ */