diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsbgst.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsbgst.c')
-rw-r--r-- | contrib/libs/clapack/dsbgst.c | 1755 |
1 files changed, 1755 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsbgst.c b/contrib/libs/clapack/dsbgst.c new file mode 100644 index 0000000000..24c9aad461 --- /dev/null +++ b/contrib/libs/clapack/dsbgst.c @@ -0,0 +1,1755 @@ +/* dsbgst.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublereal c_b8 = 0.; +static doublereal c_b9 = 1.; +static integer c__1 = 1; +static doublereal c_b20 = -1.; + +/* Subroutine */ int dsbgst_(char *vect, char *uplo, integer *n, integer *ka, + integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer * + ldbb, doublereal *x, integer *ldx, doublereal *work, integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1, + i__2, i__3, i__4; + doublereal d__1; + + /* Local variables */ + integer i__, j, k, l, m; + doublereal t; + integer i0, i1, i2, j1, j2; + doublereal ra; + integer nr, nx, ka1, kb1; + doublereal ra1; + integer j1t, j2t; + doublereal bii; + integer kbt, nrt, inca; + extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, + doublereal *, integer *, doublereal *, integer *, doublereal *, + integer *), drot_(integer *, doublereal *, integer *, doublereal * +, integer *, doublereal *, doublereal *), dscal_(integer *, + doublereal *, doublereal *, integer *); + extern logical lsame_(char *, char *); + logical upper, wantx; + extern /* Subroutine */ int dlar2v_(integer *, doublereal *, doublereal *, + doublereal *, integer *, doublereal *, doublereal *, integer *), + dlaset_(char *, integer *, integer *, doublereal *, doublereal *, + doublereal *, integer *), dlartg_(doublereal *, + doublereal *, doublereal *, doublereal *, doublereal *), xerbla_( + char *, integer *), dlargv_(integer *, doublereal *, + integer *, doublereal *, integer *, doublereal *, integer *); + logical update; + extern /* Subroutine */ int dlartv_(integer *, doublereal *, integer *, + doublereal *, integer *, doublereal *, doublereal *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DSBGST reduces a real symmetric-definite banded generalized */ +/* eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */ +/* such that C has the same bandwidth as A. */ + +/* B must have been previously factorized as S**T*S by DPBSTF, using a */ +/* split Cholesky factorization. A is overwritten by C = X**T*A*X, where */ +/* X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the */ +/* bandwidth of A. */ + +/* Arguments */ +/* ========= */ + +/* VECT (input) CHARACTER*1 */ +/* = 'N': do not form the transformation matrix X; */ +/* = 'V': form X. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* KA (input) INTEGER */ +/* The number of superdiagonals of the matrix A if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ + +/* KB (input) INTEGER */ +/* The number of superdiagonals of the matrix B if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */ + +/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */ +/* On entry, the upper or lower triangle of the symmetric band */ +/* matrix A, stored in the first ka+1 rows of the array. The */ +/* j-th column of A is stored in the j-th column of the array AB */ +/* as follows: */ +/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ +/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ + +/* On exit, the transformed matrix X**T*A*X, stored in the same */ +/* format as A. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KA+1. */ + +/* BB (input) DOUBLE PRECISION array, dimension (LDBB,N) */ +/* The banded factor S from the split Cholesky factorization of */ +/* B, as returned by DPBSTF, stored in the first KB+1 rows of */ +/* the array. */ + +/* LDBB (input) INTEGER */ +/* The leading dimension of the array BB. LDBB >= KB+1. */ + +/* X (output) DOUBLE PRECISION array, dimension (LDX,N) */ +/* If VECT = 'V', the n-by-n matrix X. */ +/* If VECT = 'N', the array X is not referenced. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of the array X. */ +/* LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise. */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + bb_dim1 = *ldbb; + bb_offset = 1 + bb_dim1; + bb -= bb_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + --work; + + /* Function Body */ + wantx = lsame_(vect, "V"); + upper = lsame_(uplo, "U"); + ka1 = *ka + 1; + kb1 = *kb + 1; + *info = 0; + if (! wantx && ! lsame_(vect, "N")) { + *info = -1; + } else if (! upper && ! lsame_(uplo, "L")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*ka < 0) { + *info = -4; + } else if (*kb < 0 || *kb > *ka) { + *info = -5; + } else if (*ldab < *ka + 1) { + *info = -7; + } else if (*ldbb < *kb + 1) { + *info = -9; + } else if (*ldx < 1 || wantx && *ldx < max(1,*n)) { + *info = -11; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DSBGST", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + inca = *ldab * ka1; + +/* Initialize X to the unit matrix, if needed */ + + if (wantx) { + dlaset_("Full", n, n, &c_b8, &c_b9, &x[x_offset], ldx); + } + +/* Set M to the splitting point m. It must be the same value as is */ +/* used in DPBSTF. The chosen value allows the arrays WORK and RWORK */ +/* to be of dimension (N). */ + + m = (*n + *kb) / 2; + +/* The routine works in two phases, corresponding to the two halves */ +/* of the split Cholesky factorization of B as S**T*S where */ + +/* S = ( U ) */ +/* ( M L ) */ + +/* with U upper triangular of order m, and L lower triangular of */ +/* order n-m. S has the same bandwidth as B. */ + +/* S is treated as a product of elementary matrices: */ + +/* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */ + +/* where S(i) is determined by the i-th row of S. */ + +/* In phase 1, the index i takes the values n, n-1, ... , m+1; */ +/* in phase 2, it takes the values 1, 2, ... , m. */ + +/* For each value of i, the current matrix A is updated by forming */ +/* inv(S(i))**T*A*inv(S(i)). This creates a triangular bulge outside */ +/* the band of A. The bulge is then pushed down toward the bottom of */ +/* A in phase 1, and up toward the top of A in phase 2, by applying */ +/* plane rotations. */ + +/* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */ +/* of them are linearly independent, so annihilating a bulge requires */ +/* only 2*kb-1 plane rotations. The rotations are divided into a 1st */ +/* set of kb-1 rotations, and a 2nd set of kb rotations. */ + +/* Wherever possible, rotations are generated and applied in vector */ +/* operations of length NR between the indices J1 and J2 (sometimes */ +/* replaced by modified values NRT, J1T or J2T). */ + +/* The cosines and sines of the rotations are stored in the array */ +/* WORK. The cosines of the 1st set of rotations are stored in */ +/* elements n+2:n+m-kb-1 and the sines of the 1st set in elements */ +/* 2:m-kb-1; the cosines of the 2nd set are stored in elements */ +/* n+m-kb+1:2*n and the sines of the second set in elements m-kb+1:n. */ + +/* The bulges are not formed explicitly; nonzero elements outside the */ +/* band are created only when they are required for generating new */ +/* rotations; they are stored in the array WORK, in positions where */ +/* they are later overwritten by the sines of the rotations which */ +/* annihilate them. */ + +/* **************************** Phase 1 ***************************** */ + +/* The logical structure of this phase is: */ + +/* UPDATE = .TRUE. */ +/* DO I = N, M + 1, -1 */ +/* use S(i) to update A and create a new bulge */ +/* apply rotations to push all bulges KA positions downward */ +/* END DO */ +/* UPDATE = .FALSE. */ +/* DO I = M + KA + 1, N - 1 */ +/* apply rotations to push all bulges KA positions downward */ +/* END DO */ + +/* To avoid duplicating code, the two loops are merged. */ + + update = TRUE_; + i__ = *n + 1; +L10: + if (update) { + --i__; +/* Computing MIN */ + i__1 = *kb, i__2 = i__ - 1; + kbt = min(i__1,i__2); + i0 = i__ - 1; +/* Computing MIN */ + i__1 = *n, i__2 = i__ + *ka; + i1 = min(i__1,i__2); + i2 = i__ - kbt + ka1; + if (i__ < m + 1) { + update = FALSE_; + ++i__; + i0 = m; + if (*ka == 0) { + goto L480; + } + goto L10; + } + } else { + i__ += *ka; + if (i__ > *n - 1) { + goto L480; + } + } + + if (upper) { + +/* Transform A, working with the upper triangle */ + + if (update) { + +/* Form inv(S(i))**T * A * inv(S(i)) */ + + bii = bb[kb1 + i__ * bb_dim1]; + i__1 = i1; + for (j = i__; j <= i__1; ++j) { + ab[i__ - j + ka1 + j * ab_dim1] /= bii; +/* L20: */ + } +/* Computing MAX */ + i__1 = 1, i__2 = i__ - *ka; + i__3 = i__; + for (j = max(i__1,i__2); j <= i__3; ++j) { + ab[j - i__ + ka1 + i__ * ab_dim1] /= bii; +/* L30: */ + } + i__3 = i__ - 1; + for (k = i__ - kbt; k <= i__3; ++k) { + i__1 = k; + for (j = i__ - kbt; j <= i__1; ++j) { + ab[j - k + ka1 + k * ab_dim1] = ab[j - k + ka1 + k * + ab_dim1] - bb[j - i__ + kb1 + i__ * bb_dim1] * ab[ + k - i__ + ka1 + i__ * ab_dim1] - bb[k - i__ + kb1 + + i__ * bb_dim1] * ab[j - i__ + ka1 + i__ * + ab_dim1] + ab[ka1 + i__ * ab_dim1] * bb[j - i__ + + kb1 + i__ * bb_dim1] * bb[k - i__ + kb1 + i__ * + bb_dim1]; +/* L40: */ + } +/* Computing MAX */ + i__1 = 1, i__2 = i__ - *ka; + i__4 = i__ - kbt - 1; + for (j = max(i__1,i__2); j <= i__4; ++j) { + ab[j - k + ka1 + k * ab_dim1] -= bb[k - i__ + kb1 + i__ * + bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1]; +/* L50: */ + } +/* L60: */ + } + i__3 = i1; + for (j = i__; j <= i__3; ++j) { +/* Computing MAX */ + i__4 = j - *ka, i__1 = i__ - kbt; + i__2 = i__ - 1; + for (k = max(i__4,i__1); k <= i__2; ++k) { + ab[k - j + ka1 + j * ab_dim1] -= bb[k - i__ + kb1 + i__ * + bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1]; +/* L70: */ + } +/* L80: */ + } + + if (wantx) { + +/* post-multiply X by inv(S(i)) */ + + i__3 = *n - m; + d__1 = 1. / bii; + dscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1); + if (kbt > 0) { + i__3 = *n - m; + dger_(&i__3, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], & + c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m + + 1 + (i__ - kbt) * x_dim1], ldx); + } + } + +/* store a(i,i1) in RA1 for use in next loop over K */ + + ra1 = ab[i__ - i1 + ka1 + i1 * ab_dim1]; + } + +/* Generate and apply vectors of rotations to chase all the */ +/* existing bulges KA positions down toward the bottom of the */ +/* band */ + + i__3 = *kb - 1; + for (k = 1; k <= i__3; ++k) { + if (update) { + +/* Determine the rotations which would annihilate the bulge */ +/* which has in theory just been created */ + + if (i__ - k + *ka < *n && i__ - k > 1) { + +/* generate rotation to annihilate a(i,i-k+ka+1) */ + + dlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, & + work[*n + i__ - k + *ka - m], &work[i__ - k + *ka + - m], &ra); + +/* create nonzero element a(i-k,i-k+ka+1) outside the */ +/* band and store it in WORK(i-k) */ + + t = -bb[kb1 - k + i__ * bb_dim1] * ra1; + work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[ + i__ - k + *ka - m] * ab[(i__ - k + *ka) * ab_dim1 + + 1]; + ab[(i__ - k + *ka) * ab_dim1 + 1] = work[i__ - k + *ka - + m] * t + work[*n + i__ - k + *ka - m] * ab[(i__ - + k + *ka) * ab_dim1 + 1]; + ra1 = ra; + } + } +/* Computing MAX */ + i__2 = 1, i__4 = k - i0 + 2; + j2 = i__ - k - 1 + max(i__2,i__4) * ka1; + nr = (*n - j2 + *ka) / ka1; + j1 = j2 + (nr - 1) * ka1; + if (update) { +/* Computing MAX */ + i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1; + j2t = max(i__2,i__4); + } else { + j2t = j2; + } + nrt = (*n - j2t + *ka) / ka1; + i__2 = j1; + i__4 = ka1; + for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) { + +/* create nonzero element a(j-ka,j+1) outside the band */ +/* and store it in WORK(j-m) */ + + work[j - m] *= ab[(j + 1) * ab_dim1 + 1]; + ab[(j + 1) * ab_dim1 + 1] = work[*n + j - m] * ab[(j + 1) * + ab_dim1 + 1]; +/* L90: */ + } + +/* generate rotations in 1st set to annihilate elements which */ +/* have been created outside the band */ + + if (nrt > 0) { + dlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], & + ka1, &work[*n + j2t - m], &ka1); + } + if (nr > 0) { + +/* apply rotations in 1st set from the right */ + + i__4 = *ka - 1; + for (l = 1; l <= i__4; ++l) { + dlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka + - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2 - + m], &work[j2 - m], &ka1); +/* L100: */ + } + +/* apply rotations in 1st set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) * + ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[ + *n + j2 - m], &work[j2 - m], &ka1); + + } + +/* start applying rotations in 1st set from the left */ + + i__4 = *kb - k + 1; + for (l = *ka - 1; l >= i__4; --l) { + nrt = (*n - j2 + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, & + ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, & + work[*n + j2 - m], &work[j2 - m], &ka1); + } +/* L110: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 1st set */ + + i__4 = j1; + i__2 = ka1; + for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) { + i__1 = *n - m; + drot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j + + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j + - m]); +/* L120: */ + } + } +/* L130: */ + } + + if (update) { + if (i2 <= *n && kbt > 0) { + +/* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */ +/* band and store it in WORK(i-kbt) */ + + work[i__ - kbt] = -bb[kb1 - kbt + i__ * bb_dim1] * ra1; + } + } + + for (k = *kb; k >= 1; --k) { + if (update) { +/* Computing MAX */ + i__3 = 2, i__2 = k - i0 + 1; + j2 = i__ - k - 1 + max(i__3,i__2) * ka1; + } else { +/* Computing MAX */ + i__3 = 1, i__2 = k - i0 + 1; + j2 = i__ - k - 1 + max(i__3,i__2) * ka1; + } + +/* finish applying rotations in 2nd set from the left */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (*n - j2 + *ka + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[ + l + 1 + (j2 - l + 1) * ab_dim1], &inca, &work[*n + + j2 - *ka], &work[j2 - *ka], &ka1); + } +/* L140: */ + } + nr = (*n - j2 + *ka) / ka1; + j1 = j2 + (nr - 1) * ka1; + i__3 = j2; + i__2 = -ka1; + for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) { + work[j] = work[j - *ka]; + work[*n + j] = work[*n + j - *ka]; +/* L150: */ + } + i__2 = j1; + i__3 = ka1; + for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) { + +/* create nonzero element a(j-ka,j+1) outside the band */ +/* and store it in WORK(j) */ + + work[j] *= ab[(j + 1) * ab_dim1 + 1]; + ab[(j + 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + 1) * + ab_dim1 + 1]; +/* L160: */ + } + if (update) { + if (i__ - k < *n - *ka && k <= kbt) { + work[i__ - k + *ka] = work[i__ - k]; + } + } +/* L170: */ + } + + for (k = *kb; k >= 1; --k) { +/* Computing MAX */ + i__3 = 1, i__2 = k - i0 + 1; + j2 = i__ - k - 1 + max(i__3,i__2) * ka1; + nr = (*n - j2 + *ka) / ka1; + j1 = j2 + (nr - 1) * ka1; + if (nr > 0) { + +/* generate rotations in 2nd set to annihilate elements */ +/* which have been created outside the band */ + + dlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, & + work[*n + j2], &ka1); + +/* apply rotations in 2nd set from the right */ + + i__3 = *ka - 1; + for (l = 1; l <= i__3; ++l) { + dlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka + - l + (j2 + 1) * ab_dim1], &inca, &work[*n + j2], + &work[j2], &ka1); +/* L180: */ + } + +/* apply rotations in 2nd set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) * + ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &work[ + *n + j2], &work[j2], &ka1); + + } + +/* start applying rotations in 2nd set from the left */ + + i__3 = *kb - k + 1; + for (l = *ka - 1; l >= i__3; --l) { + nrt = (*n - j2 + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, & + ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, & + work[*n + j2], &work[j2], &ka1); + } +/* L190: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 2nd set */ + + i__3 = j1; + i__2 = ka1; + for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) { + i__4 = *n - m; + drot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j + + 1) * x_dim1], &c__1, &work[*n + j], &work[j]); +/* L200: */ + } + } +/* L210: */ + } + + i__2 = *kb - 1; + for (k = 1; k <= i__2; ++k) { +/* Computing MAX */ + i__3 = 1, i__4 = k - i0 + 2; + j2 = i__ - k - 1 + max(i__3,i__4) * ka1; + +/* finish applying rotations in 1st set from the left */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (*n - j2 + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, & + ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, & + work[*n + j2 - m], &work[j2 - m], &ka1); + } +/* L220: */ + } +/* L230: */ + } + + if (*kb > 1) { + i__2 = i__ - *kb + (*ka << 1) + 1; + for (j = *n - 1; j >= i__2; --j) { + work[*n + j - m] = work[*n + j - *ka - m]; + work[j - m] = work[j - *ka - m]; +/* L240: */ + } + } + + } else { + +/* Transform A, working with the lower triangle */ + + if (update) { + +/* Form inv(S(i))**T * A * inv(S(i)) */ + + bii = bb[i__ * bb_dim1 + 1]; + i__2 = i1; + for (j = i__; j <= i__2; ++j) { + ab[j - i__ + 1 + i__ * ab_dim1] /= bii; +/* L250: */ + } +/* Computing MAX */ + i__2 = 1, i__3 = i__ - *ka; + i__4 = i__; + for (j = max(i__2,i__3); j <= i__4; ++j) { + ab[i__ - j + 1 + j * ab_dim1] /= bii; +/* L260: */ + } + i__4 = i__ - 1; + for (k = i__ - kbt; k <= i__4; ++k) { + i__2 = k; + for (j = i__ - kbt; j <= i__2; ++j) { + ab[k - j + 1 + j * ab_dim1] = ab[k - j + 1 + j * ab_dim1] + - bb[i__ - j + 1 + j * bb_dim1] * ab[i__ - k + 1 + + k * ab_dim1] - bb[i__ - k + 1 + k * bb_dim1] * + ab[i__ - j + 1 + j * ab_dim1] + ab[i__ * ab_dim1 + + 1] * bb[i__ - j + 1 + j * bb_dim1] * bb[i__ - k + + 1 + k * bb_dim1]; +/* L270: */ + } +/* Computing MAX */ + i__2 = 1, i__3 = i__ - *ka; + i__1 = i__ - kbt - 1; + for (j = max(i__2,i__3); j <= i__1; ++j) { + ab[k - j + 1 + j * ab_dim1] -= bb[i__ - k + 1 + k * + bb_dim1] * ab[i__ - j + 1 + j * ab_dim1]; +/* L280: */ + } +/* L290: */ + } + i__4 = i1; + for (j = i__; j <= i__4; ++j) { +/* Computing MAX */ + i__1 = j - *ka, i__2 = i__ - kbt; + i__3 = i__ - 1; + for (k = max(i__1,i__2); k <= i__3; ++k) { + ab[j - k + 1 + k * ab_dim1] -= bb[i__ - k + 1 + k * + bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1]; +/* L300: */ + } +/* L310: */ + } + + if (wantx) { + +/* post-multiply X by inv(S(i)) */ + + i__4 = *n - m; + d__1 = 1. / bii; + dscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1); + if (kbt > 0) { + i__4 = *n - m; + i__3 = *ldbb - 1; + dger_(&i__4, &kbt, &c_b20, &x[m + 1 + i__ * x_dim1], & + c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3, + &x[m + 1 + (i__ - kbt) * x_dim1], ldx); + } + } + +/* store a(i1,i) in RA1 for use in next loop over K */ + + ra1 = ab[i1 - i__ + 1 + i__ * ab_dim1]; + } + +/* Generate and apply vectors of rotations to chase all the */ +/* existing bulges KA positions down toward the bottom of the */ +/* band */ + + i__4 = *kb - 1; + for (k = 1; k <= i__4; ++k) { + if (update) { + +/* Determine the rotations which would annihilate the bulge */ +/* which has in theory just been created */ + + if (i__ - k + *ka < *n && i__ - k > 1) { + +/* generate rotation to annihilate a(i-k+ka+1,i) */ + + dlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &work[*n + + i__ - k + *ka - m], &work[i__ - k + *ka - m], &ra) + ; + +/* create nonzero element a(i-k+ka+1,i-k) outside the */ +/* band and store it in WORK(i-k) */ + + t = -bb[k + 1 + (i__ - k) * bb_dim1] * ra1; + work[i__ - k] = work[*n + i__ - k + *ka - m] * t - work[ + i__ - k + *ka - m] * ab[ka1 + (i__ - k) * ab_dim1] + ; + ab[ka1 + (i__ - k) * ab_dim1] = work[i__ - k + *ka - m] * + t + work[*n + i__ - k + *ka - m] * ab[ka1 + (i__ + - k) * ab_dim1]; + ra1 = ra; + } + } +/* Computing MAX */ + i__3 = 1, i__1 = k - i0 + 2; + j2 = i__ - k - 1 + max(i__3,i__1) * ka1; + nr = (*n - j2 + *ka) / ka1; + j1 = j2 + (nr - 1) * ka1; + if (update) { +/* Computing MAX */ + i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1; + j2t = max(i__3,i__1); + } else { + j2t = j2; + } + nrt = (*n - j2t + *ka) / ka1; + i__3 = j1; + i__1 = ka1; + for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) { + +/* create nonzero element a(j+1,j-ka) outside the band */ +/* and store it in WORK(j-m) */ + + work[j - m] *= ab[ka1 + (j - *ka + 1) * ab_dim1]; + ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j - m] * ab[ka1 + + (j - *ka + 1) * ab_dim1]; +/* L320: */ + } + +/* generate rotations in 1st set to annihilate elements which */ +/* have been created outside the band */ + + if (nrt > 0) { + dlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[ + j2t - m], &ka1, &work[*n + j2t - m], &ka1); + } + if (nr > 0) { + +/* apply rotations in 1st set from the left */ + + i__1 = *ka - 1; + for (l = 1; l <= i__1; ++l) { + dlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[ + l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2 + - m], &work[j2 - m], &ka1); +/* L330: */ + } + +/* apply rotations in 1st set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 + + 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2 - m], + &work[j2 - m], &ka1); + + } + +/* start applying rotations in 1st set from the right */ + + i__1 = *kb - k + 1; + for (l = *ka - 1; l >= i__1; --l) { + nrt = (*n - j2 + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[ + ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n + + j2 - m], &work[j2 - m], &ka1); + } +/* L340: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 1st set */ + + i__1 = j1; + i__3 = ka1; + for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) { + i__2 = *n - m; + drot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j + + 1) * x_dim1], &c__1, &work[*n + j - m], &work[j + - m]); +/* L350: */ + } + } +/* L360: */ + } + + if (update) { + if (i2 <= *n && kbt > 0) { + +/* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */ +/* band and store it in WORK(i-kbt) */ + + work[i__ - kbt] = -bb[kbt + 1 + (i__ - kbt) * bb_dim1] * ra1; + } + } + + for (k = *kb; k >= 1; --k) { + if (update) { +/* Computing MAX */ + i__4 = 2, i__3 = k - i0 + 1; + j2 = i__ - k - 1 + max(i__4,i__3) * ka1; + } else { +/* Computing MAX */ + i__4 = 1, i__3 = k - i0 + 1; + j2 = i__ - k - 1 + max(i__4,i__3) * ka1; + } + +/* finish applying rotations in 2nd set from the right */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (*n - j2 + *ka + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], & + inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], & + inca, &work[*n + j2 - *ka], &work[j2 - *ka], &ka1) + ; + } +/* L370: */ + } + nr = (*n - j2 + *ka) / ka1; + j1 = j2 + (nr - 1) * ka1; + i__4 = j2; + i__3 = -ka1; + for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { + work[j] = work[j - *ka]; + work[*n + j] = work[*n + j - *ka]; +/* L380: */ + } + i__3 = j1; + i__4 = ka1; + for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { + +/* create nonzero element a(j+1,j-ka) outside the band */ +/* and store it in WORK(j) */ + + work[j] *= ab[ka1 + (j - *ka + 1) * ab_dim1]; + ab[ka1 + (j - *ka + 1) * ab_dim1] = work[*n + j] * ab[ka1 + ( + j - *ka + 1) * ab_dim1]; +/* L390: */ + } + if (update) { + if (i__ - k < *n - *ka && k <= kbt) { + work[i__ - k + *ka] = work[i__ - k]; + } + } +/* L400: */ + } + + for (k = *kb; k >= 1; --k) { +/* Computing MAX */ + i__4 = 1, i__3 = k - i0 + 1; + j2 = i__ - k - 1 + max(i__4,i__3) * ka1; + nr = (*n - j2 + *ka) / ka1; + j1 = j2 + (nr - 1) * ka1; + if (nr > 0) { + +/* generate rotations in 2nd set to annihilate elements */ +/* which have been created outside the band */ + + dlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2] +, &ka1, &work[*n + j2], &ka1); + +/* apply rotations in 2nd set from the left */ + + i__4 = *ka - 1; + for (l = 1; l <= i__4; ++l) { + dlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[ + l + 2 + (j2 - l) * ab_dim1], &inca, &work[*n + j2] +, &work[j2], &ka1); +/* L410: */ + } + +/* apply rotations in 2nd set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 + + 1], &ab[j2 * ab_dim1 + 2], &inca, &work[*n + j2], & + work[j2], &ka1); + + } + +/* start applying rotations in 2nd set from the right */ + + i__4 = *kb - k + 1; + for (l = *ka - 1; l >= i__4; --l) { + nrt = (*n - j2 + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[ + ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n + + j2], &work[j2], &ka1); + } +/* L420: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 2nd set */ + + i__4 = j1; + i__3 = ka1; + for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { + i__1 = *n - m; + drot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j + + 1) * x_dim1], &c__1, &work[*n + j], &work[j]); +/* L430: */ + } + } +/* L440: */ + } + + i__3 = *kb - 1; + for (k = 1; k <= i__3; ++k) { +/* Computing MAX */ + i__4 = 1, i__1 = k - i0 + 2; + j2 = i__ - k - 1 + max(i__4,i__1) * ka1; + +/* finish applying rotations in 1st set from the right */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (*n - j2 + l) / ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[ + ka1 - l + (j2 + 1) * ab_dim1], &inca, &work[*n + + j2 - m], &work[j2 - m], &ka1); + } +/* L450: */ + } +/* L460: */ + } + + if (*kb > 1) { + i__3 = i__ - *kb + (*ka << 1) + 1; + for (j = *n - 1; j >= i__3; --j) { + work[*n + j - m] = work[*n + j - *ka - m]; + work[j - m] = work[j - *ka - m]; +/* L470: */ + } + } + + } + + goto L10; + +L480: + +/* **************************** Phase 2 ***************************** */ + +/* The logical structure of this phase is: */ + +/* UPDATE = .TRUE. */ +/* DO I = 1, M */ +/* use S(i) to update A and create a new bulge */ +/* apply rotations to push all bulges KA positions upward */ +/* END DO */ +/* UPDATE = .FALSE. */ +/* DO I = M - KA - 1, 2, -1 */ +/* apply rotations to push all bulges KA positions upward */ +/* END DO */ + +/* To avoid duplicating code, the two loops are merged. */ + + update = TRUE_; + i__ = 0; +L490: + if (update) { + ++i__; +/* Computing MIN */ + i__3 = *kb, i__4 = m - i__; + kbt = min(i__3,i__4); + i0 = i__ + 1; +/* Computing MAX */ + i__3 = 1, i__4 = i__ - *ka; + i1 = max(i__3,i__4); + i2 = i__ + kbt - ka1; + if (i__ > m) { + update = FALSE_; + --i__; + i0 = m + 1; + if (*ka == 0) { + return 0; + } + goto L490; + } + } else { + i__ -= *ka; + if (i__ < 2) { + return 0; + } + } + + if (i__ < m - kbt) { + nx = m; + } else { + nx = *n; + } + + if (upper) { + +/* Transform A, working with the upper triangle */ + + if (update) { + +/* Form inv(S(i))**T * A * inv(S(i)) */ + + bii = bb[kb1 + i__ * bb_dim1]; + i__3 = i__; + for (j = i1; j <= i__3; ++j) { + ab[j - i__ + ka1 + i__ * ab_dim1] /= bii; +/* L500: */ + } +/* Computing MIN */ + i__4 = *n, i__1 = i__ + *ka; + i__3 = min(i__4,i__1); + for (j = i__; j <= i__3; ++j) { + ab[i__ - j + ka1 + j * ab_dim1] /= bii; +/* L510: */ + } + i__3 = i__ + kbt; + for (k = i__ + 1; k <= i__3; ++k) { + i__4 = i__ + kbt; + for (j = k; j <= i__4; ++j) { + ab[k - j + ka1 + j * ab_dim1] = ab[k - j + ka1 + j * + ab_dim1] - bb[i__ - j + kb1 + j * bb_dim1] * ab[ + i__ - k + ka1 + k * ab_dim1] - bb[i__ - k + kb1 + + k * bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1] + + ab[ka1 + i__ * ab_dim1] * bb[i__ - j + kb1 + j * + bb_dim1] * bb[i__ - k + kb1 + k * bb_dim1]; +/* L520: */ + } +/* Computing MIN */ + i__1 = *n, i__2 = i__ + *ka; + i__4 = min(i__1,i__2); + for (j = i__ + kbt + 1; j <= i__4; ++j) { + ab[k - j + ka1 + j * ab_dim1] -= bb[i__ - k + kb1 + k * + bb_dim1] * ab[i__ - j + ka1 + j * ab_dim1]; +/* L530: */ + } +/* L540: */ + } + i__3 = i__; + for (j = i1; j <= i__3; ++j) { +/* Computing MIN */ + i__1 = j + *ka, i__2 = i__ + kbt; + i__4 = min(i__1,i__2); + for (k = i__ + 1; k <= i__4; ++k) { + ab[j - k + ka1 + k * ab_dim1] -= bb[i__ - k + kb1 + k * + bb_dim1] * ab[j - i__ + ka1 + i__ * ab_dim1]; +/* L550: */ + } +/* L560: */ + } + + if (wantx) { + +/* post-multiply X by inv(S(i)) */ + + d__1 = 1. / bii; + dscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1); + if (kbt > 0) { + i__3 = *ldbb - 1; + dger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[ + *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) * + x_dim1 + 1], ldx); + } + } + +/* store a(i1,i) in RA1 for use in next loop over K */ + + ra1 = ab[i1 - i__ + ka1 + i__ * ab_dim1]; + } + +/* Generate and apply vectors of rotations to chase all the */ +/* existing bulges KA positions up toward the top of the band */ + + i__3 = *kb - 1; + for (k = 1; k <= i__3; ++k) { + if (update) { + +/* Determine the rotations which would annihilate the bulge */ +/* which has in theory just been created */ + + if (i__ + k - ka1 > 0 && i__ + k < m) { + +/* generate rotation to annihilate a(i+k-ka-1,i) */ + + dlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &work[*n + i__ + + k - *ka], &work[i__ + k - *ka], &ra); + +/* create nonzero element a(i+k-ka-1,i+k) outside the */ +/* band and store it in WORK(m-kb+i+k) */ + + t = -bb[kb1 - k + (i__ + k) * bb_dim1] * ra1; + work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t - + work[i__ + k - *ka] * ab[(i__ + k) * ab_dim1 + 1]; + ab[(i__ + k) * ab_dim1 + 1] = work[i__ + k - *ka] * t + + work[*n + i__ + k - *ka] * ab[(i__ + k) * ab_dim1 + + 1]; + ra1 = ra; + } + } +/* Computing MAX */ + i__4 = 1, i__1 = k + i0 - m + 1; + j2 = i__ + k + 1 - max(i__4,i__1) * ka1; + nr = (j2 + *ka - 1) / ka1; + j1 = j2 - (nr - 1) * ka1; + if (update) { +/* Computing MIN */ + i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1; + j2t = min(i__4,i__1); + } else { + j2t = j2; + } + nrt = (j2t + *ka - 1) / ka1; + i__4 = j2t; + i__1 = ka1; + for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) { + +/* create nonzero element a(j-1,j+ka) outside the band */ +/* and store it in WORK(j) */ + + work[j] *= ab[(j + *ka - 1) * ab_dim1 + 1]; + ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + j] * ab[(j + *ka + - 1) * ab_dim1 + 1]; +/* L570: */ + } + +/* generate rotations in 1st set to annihilate elements which */ +/* have been created outside the band */ + + if (nrt > 0) { + dlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1], + &ka1, &work[*n + j1], &ka1); + } + if (nr > 0) { + +/* apply rotations in 1st set from the left */ + + i__1 = *ka - 1; + for (l = 1; l <= i__1; ++l) { + dlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, & + ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n + + j1], &work[j1], &ka1); +/* L580: */ + } + +/* apply rotations in 1st set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) * + ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n + + j1], &work[j1], &ka1); + + } + +/* start applying rotations in 1st set from the right */ + + i__1 = *kb - k + 1; + for (l = *ka - 1; l >= i__1; --l) { + nrt = (j2 + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + ( + j1t - 1) * ab_dim1], &inca, &work[*n + j1t], & + work[j1t], &ka1); + } +/* L590: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 1st set */ + + i__1 = j2; + i__4 = ka1; + for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) { + drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 + + 1], &c__1, &work[*n + j], &work[j]); +/* L600: */ + } + } +/* L610: */ + } + + if (update) { + if (i2 > 0 && kbt > 0) { + +/* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */ +/* band and store it in WORK(m-kb+i+kbt) */ + + work[m - *kb + i__ + kbt] = -bb[kb1 - kbt + (i__ + kbt) * + bb_dim1] * ra1; + } + } + + for (k = *kb; k >= 1; --k) { + if (update) { +/* Computing MAX */ + i__3 = 2, i__4 = k + i0 - m; + j2 = i__ + k + 1 - max(i__3,i__4) * ka1; + } else { +/* Computing MAX */ + i__3 = 1, i__4 = k + i0 - m; + j2 = i__ + k + 1 - max(i__3,i__4) * ka1; + } + +/* finish applying rotations in 2nd set from the right */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (j2 + *ka + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[ + l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &work[* + n + m - *kb + j1t + *ka], &work[m - *kb + j1t + * + ka], &ka1); + } +/* L620: */ + } + nr = (j2 + *ka - 1) / ka1; + j1 = j2 - (nr - 1) * ka1; + i__3 = j2; + i__4 = ka1; + for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { + work[m - *kb + j] = work[m - *kb + j + *ka]; + work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka]; +/* L630: */ + } + i__4 = j2; + i__3 = ka1; + for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { + +/* create nonzero element a(j-1,j+ka) outside the band */ +/* and store it in WORK(m-kb+j) */ + + work[m - *kb + j] *= ab[(j + *ka - 1) * ab_dim1 + 1]; + ab[(j + *ka - 1) * ab_dim1 + 1] = work[*n + m - *kb + j] * ab[ + (j + *ka - 1) * ab_dim1 + 1]; +/* L640: */ + } + if (update) { + if (i__ + k > ka1 && k <= kbt) { + work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k]; + } + } +/* L650: */ + } + + for (k = *kb; k >= 1; --k) { +/* Computing MAX */ + i__3 = 1, i__4 = k + i0 - m; + j2 = i__ + k + 1 - max(i__3,i__4) * ka1; + nr = (j2 + *ka - 1) / ka1; + j1 = j2 - (nr - 1) * ka1; + if (nr > 0) { + +/* generate rotations in 2nd set to annihilate elements */ +/* which have been created outside the band */ + + dlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - * + kb + j1], &ka1, &work[*n + m - *kb + j1], &ka1); + +/* apply rotations in 2nd set from the left */ + + i__3 = *ka - 1; + for (l = 1; l <= i__3; ++l) { + dlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, & + ab[*ka - l + (j1 + l) * ab_dim1], &inca, &work[*n + + m - *kb + j1], &work[m - *kb + j1], &ka1); +/* L660: */ + } + +/* apply rotations in 2nd set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) * + ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &work[*n + + m - *kb + j1], &work[m - *kb + j1], &ka1); + + } + +/* start applying rotations in 2nd set from the right */ + + i__3 = *kb - k + 1; + for (l = *ka - 1; l >= i__3; --l) { + nrt = (j2 + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + ( + j1t - 1) * ab_dim1], &inca, &work[*n + m - *kb + + j1t], &work[m - *kb + j1t], &ka1); + } +/* L670: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 2nd set */ + + i__3 = j2; + i__4 = ka1; + for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { + drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 + + 1], &c__1, &work[*n + m - *kb + j], &work[m - * + kb + j]); +/* L680: */ + } + } +/* L690: */ + } + + i__4 = *kb - 1; + for (k = 1; k <= i__4; ++k) { +/* Computing MAX */ + i__3 = 1, i__1 = k + i0 - m + 1; + j2 = i__ + k + 1 - max(i__3,i__1) * ka1; + +/* finish applying rotations in 1st set from the right */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (j2 + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + ( + j1t - 1) * ab_dim1], &inca, &work[*n + j1t], & + work[j1t], &ka1); + } +/* L700: */ + } +/* L710: */ + } + + if (*kb > 1) { +/* Computing MIN */ + i__3 = i__ + *kb; + i__4 = min(i__3,m) - (*ka << 1) - 1; + for (j = 2; j <= i__4; ++j) { + work[*n + j] = work[*n + j + *ka]; + work[j] = work[j + *ka]; +/* L720: */ + } + } + + } else { + +/* Transform A, working with the lower triangle */ + + if (update) { + +/* Form inv(S(i))**T * A * inv(S(i)) */ + + bii = bb[i__ * bb_dim1 + 1]; + i__4 = i__; + for (j = i1; j <= i__4; ++j) { + ab[i__ - j + 1 + j * ab_dim1] /= bii; +/* L730: */ + } +/* Computing MIN */ + i__3 = *n, i__1 = i__ + *ka; + i__4 = min(i__3,i__1); + for (j = i__; j <= i__4; ++j) { + ab[j - i__ + 1 + i__ * ab_dim1] /= bii; +/* L740: */ + } + i__4 = i__ + kbt; + for (k = i__ + 1; k <= i__4; ++k) { + i__3 = i__ + kbt; + for (j = k; j <= i__3; ++j) { + ab[j - k + 1 + k * ab_dim1] = ab[j - k + 1 + k * ab_dim1] + - bb[j - i__ + 1 + i__ * bb_dim1] * ab[k - i__ + + 1 + i__ * ab_dim1] - bb[k - i__ + 1 + i__ * + bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1] + ab[ + i__ * ab_dim1 + 1] * bb[j - i__ + 1 + i__ * + bb_dim1] * bb[k - i__ + 1 + i__ * bb_dim1]; +/* L750: */ + } +/* Computing MIN */ + i__1 = *n, i__2 = i__ + *ka; + i__3 = min(i__1,i__2); + for (j = i__ + kbt + 1; j <= i__3; ++j) { + ab[j - k + 1 + k * ab_dim1] -= bb[k - i__ + 1 + i__ * + bb_dim1] * ab[j - i__ + 1 + i__ * ab_dim1]; +/* L760: */ + } +/* L770: */ + } + i__4 = i__; + for (j = i1; j <= i__4; ++j) { +/* Computing MIN */ + i__1 = j + *ka, i__2 = i__ + kbt; + i__3 = min(i__1,i__2); + for (k = i__ + 1; k <= i__3; ++k) { + ab[k - j + 1 + j * ab_dim1] -= bb[k - i__ + 1 + i__ * + bb_dim1] * ab[i__ - j + 1 + j * ab_dim1]; +/* L780: */ + } +/* L790: */ + } + + if (wantx) { + +/* post-multiply X by inv(S(i)) */ + + d__1 = 1. / bii; + dscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1); + if (kbt > 0) { + dger_(&nx, &kbt, &c_b20, &x[i__ * x_dim1 + 1], &c__1, &bb[ + i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1 + + 1], ldx); + } + } + +/* store a(i,i1) in RA1 for use in next loop over K */ + + ra1 = ab[i__ - i1 + 1 + i1 * ab_dim1]; + } + +/* Generate and apply vectors of rotations to chase all the */ +/* existing bulges KA positions up toward the top of the band */ + + i__4 = *kb - 1; + for (k = 1; k <= i__4; ++k) { + if (update) { + +/* Determine the rotations which would annihilate the bulge */ +/* which has in theory just been created */ + + if (i__ + k - ka1 > 0 && i__ + k < m) { + +/* generate rotation to annihilate a(i,i+k-ka-1) */ + + dlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, & + work[*n + i__ + k - *ka], &work[i__ + k - *ka], & + ra); + +/* create nonzero element a(i+k,i+k-ka-1) outside the */ +/* band and store it in WORK(m-kb+i+k) */ + + t = -bb[k + 1 + i__ * bb_dim1] * ra1; + work[m - *kb + i__ + k] = work[*n + i__ + k - *ka] * t - + work[i__ + k - *ka] * ab[ka1 + (i__ + k - *ka) * + ab_dim1]; + ab[ka1 + (i__ + k - *ka) * ab_dim1] = work[i__ + k - *ka] + * t + work[*n + i__ + k - *ka] * ab[ka1 + (i__ + + k - *ka) * ab_dim1]; + ra1 = ra; + } + } +/* Computing MAX */ + i__3 = 1, i__1 = k + i0 - m + 1; + j2 = i__ + k + 1 - max(i__3,i__1) * ka1; + nr = (j2 + *ka - 1) / ka1; + j1 = j2 - (nr - 1) * ka1; + if (update) { +/* Computing MIN */ + i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1; + j2t = min(i__3,i__1); + } else { + j2t = j2; + } + nrt = (j2t + *ka - 1) / ka1; + i__3 = j2t; + i__1 = ka1; + for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) { + +/* create nonzero element a(j+ka,j-1) outside the band */ +/* and store it in WORK(j) */ + + work[j] *= ab[ka1 + (j - 1) * ab_dim1]; + ab[ka1 + (j - 1) * ab_dim1] = work[*n + j] * ab[ka1 + (j - 1) + * ab_dim1]; +/* L800: */ + } + +/* generate rotations in 1st set to annihilate elements which */ +/* have been created outside the band */ + + if (nrt > 0) { + dlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1, + &work[*n + j1], &ka1); + } + if (nr > 0) { + +/* apply rotations in 1st set from the right */ + + i__1 = *ka - 1; + for (l = 1; l <= i__1; ++l) { + dlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2 + + (j1 - 1) * ab_dim1], &inca, &work[*n + j1], & + work[j1], &ka1); +/* L810: */ + } + +/* apply rotations in 1st set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + + 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + j1] +, &work[j1], &ka1); + + } + +/* start applying rotations in 1st set from the left */ + + i__1 = *kb - k + 1; + for (l = *ka - 1; l >= i__1; --l) { + nrt = (j2 + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1] +, &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1], + &inca, &work[*n + j1t], &work[j1t], &ka1); + } +/* L820: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 1st set */ + + i__1 = j2; + i__3 = ka1; + for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) { + drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 + + 1], &c__1, &work[*n + j], &work[j]); +/* L830: */ + } + } +/* L840: */ + } + + if (update) { + if (i2 > 0 && kbt > 0) { + +/* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */ +/* band and store it in WORK(m-kb+i+kbt) */ + + work[m - *kb + i__ + kbt] = -bb[kbt + 1 + i__ * bb_dim1] * + ra1; + } + } + + for (k = *kb; k >= 1; --k) { + if (update) { +/* Computing MAX */ + i__4 = 2, i__3 = k + i0 - m; + j2 = i__ + k + 1 - max(i__4,i__3) * ka1; + } else { +/* Computing MAX */ + i__4 = 1, i__3 = k + i0 - m; + j2 = i__ + k + 1 - max(i__4,i__3) * ka1; + } + +/* finish applying rotations in 2nd set from the left */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (j2 + *ka + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1], + &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], & + inca, &work[*n + m - *kb + j1t + *ka], &work[m - * + kb + j1t + *ka], &ka1); + } +/* L850: */ + } + nr = (j2 + *ka - 1) / ka1; + j1 = j2 - (nr - 1) * ka1; + i__4 = j2; + i__3 = ka1; + for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { + work[m - *kb + j] = work[m - *kb + j + *ka]; + work[*n + m - *kb + j] = work[*n + m - *kb + j + *ka]; +/* L860: */ + } + i__3 = j2; + i__4 = ka1; + for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { + +/* create nonzero element a(j+ka,j-1) outside the band */ +/* and store it in WORK(m-kb+j) */ + + work[m - *kb + j] *= ab[ka1 + (j - 1) * ab_dim1]; + ab[ka1 + (j - 1) * ab_dim1] = work[*n + m - *kb + j] * ab[ka1 + + (j - 1) * ab_dim1]; +/* L870: */ + } + if (update) { + if (i__ + k > ka1 && k <= kbt) { + work[m - *kb + i__ + k - *ka] = work[m - *kb + i__ + k]; + } + } +/* L880: */ + } + + for (k = *kb; k >= 1; --k) { +/* Computing MAX */ + i__4 = 1, i__3 = k + i0 - m; + j2 = i__ + k + 1 - max(i__4,i__3) * ka1; + nr = (j2 + *ka - 1) / ka1; + j1 = j2 - (nr - 1) * ka1; + if (nr > 0) { + +/* generate rotations in 2nd set to annihilate elements */ +/* which have been created outside the band */ + + dlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb + + j1], &ka1, &work[*n + m - *kb + j1], &ka1); + +/* apply rotations in 2nd set from the right */ + + i__4 = *ka - 1; + for (l = 1; l <= i__4; ++l) { + dlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2 + + (j1 - 1) * ab_dim1], &inca, &work[*n + m - *kb + + j1], &work[m - *kb + j1], &ka1); +/* L890: */ + } + +/* apply rotations in 2nd set from both sides to diagonal */ +/* blocks */ + + dlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + + 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &work[*n + m + - *kb + j1], &work[m - *kb + j1], &ka1); + + } + +/* start applying rotations in 2nd set from the left */ + + i__4 = *kb - k + 1; + for (l = *ka - 1; l >= i__4; --l) { + nrt = (j2 + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1] +, &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1], + &inca, &work[*n + m - *kb + j1t], &work[m - *kb + + j1t], &ka1); + } +/* L900: */ + } + + if (wantx) { + +/* post-multiply X by product of rotations in 2nd set */ + + i__4 = j2; + i__3 = ka1; + for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { + drot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 + + 1], &c__1, &work[*n + m - *kb + j], &work[m - * + kb + j]); +/* L910: */ + } + } +/* L920: */ + } + + i__3 = *kb - 1; + for (k = 1; k <= i__3; ++k) { +/* Computing MAX */ + i__4 = 1, i__1 = k + i0 - m + 1; + j2 = i__ + k + 1 - max(i__4,i__1) * ka1; + +/* finish applying rotations in 1st set from the left */ + + for (l = *kb - k; l >= 1; --l) { + nrt = (j2 + l - 1) / ka1; + j1t = j2 - (nrt - 1) * ka1; + if (nrt > 0) { + dlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1] +, &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1], + &inca, &work[*n + j1t], &work[j1t], &ka1); + } +/* L930: */ + } +/* L940: */ + } + + if (*kb > 1) { +/* Computing MIN */ + i__4 = i__ + *kb; + i__3 = min(i__4,m) - (*ka << 1) - 1; + for (j = 2; j <= i__3; ++j) { + work[*n + j] = work[*n + j + *ka]; + work[j] = work[j + *ka]; +/* L950: */ + } + } + + } + + goto L490; + +/* End of DSBGST */ + +} /* dsbgst_ */ |