diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsbevx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsbevx.c')
-rw-r--r-- | contrib/libs/clapack/dsbevx.c | 520 |
1 files changed, 520 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsbevx.c b/contrib/libs/clapack/dsbevx.c new file mode 100644 index 0000000000..29916a010c --- /dev/null +++ b/contrib/libs/clapack/dsbevx.c @@ -0,0 +1,520 @@ +/* dsbevx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublereal c_b14 = 1.; +static integer c__1 = 1; +static doublereal c_b34 = 0.; + +/* Subroutine */ int dsbevx_(char *jobz, char *range, char *uplo, integer *n, + integer *kd, doublereal *ab, integer *ldab, doublereal *q, integer * + ldq, doublereal *vl, doublereal *vu, integer *il, integer *iu, + doublereal *abstol, integer *m, doublereal *w, doublereal *z__, + integer *ldz, doublereal *work, integer *iwork, integer *ifail, + integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, + i__2; + doublereal d__1, d__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, jj; + doublereal eps, vll, vuu, tmp1; + integer indd, inde; + doublereal anrm; + integer imax; + doublereal rmin, rmax; + logical test; + integer itmp1, indee; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *); + doublereal sigma; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int dgemv_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, doublereal *, integer *, + doublereal *, doublereal *, integer *); + integer iinfo; + char order[1]; + extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, + doublereal *, integer *), dswap_(integer *, doublereal *, integer + *, doublereal *, integer *); + logical lower, wantz; + extern doublereal dlamch_(char *); + logical alleig, indeig; + integer iscale, indibl; + extern /* Subroutine */ int dlascl_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, integer *, doublereal *, + integer *, integer *); + extern doublereal dlansb_(char *, char *, integer *, integer *, + doublereal *, integer *, doublereal *); + logical valeig; + extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, + doublereal *, integer *, doublereal *, integer *); + doublereal safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + doublereal abstll, bignum; + extern /* Subroutine */ int dsbtrd_(char *, char *, integer *, integer *, + doublereal *, integer *, doublereal *, doublereal *, doublereal *, + integer *, doublereal *, integer *); + integer indisp; + extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, + integer *, doublereal *, integer *, integer *, doublereal *, + integer *, doublereal *, integer *, integer *, integer *), + dsterf_(integer *, doublereal *, doublereal *, integer *); + integer indiwo; + extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal + *, doublereal *, integer *, integer *, doublereal *, doublereal *, + doublereal *, integer *, integer *, doublereal *, integer *, + integer *, doublereal *, integer *, integer *); + integer indwrk; + extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, + doublereal *, doublereal *, integer *, doublereal *, integer *); + integer nsplit; + doublereal smlnum; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DSBEVX computes selected eigenvalues and, optionally, eigenvectors */ +/* of a real symmetric band matrix A. Eigenvalues and eigenvectors can */ +/* be selected by specifying either a range of values or a range of */ +/* indices for the desired eigenvalues. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* RANGE (input) CHARACTER*1 */ +/* = 'A': all eigenvalues will be found; */ +/* = 'V': all eigenvalues in the half-open interval (VL,VU] */ +/* will be found; */ +/* = 'I': the IL-th through IU-th eigenvalues will be found. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* KD (input) INTEGER */ +/* The number of superdiagonals of the matrix A if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ + +/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */ +/* On entry, the upper or lower triangle of the symmetric band */ +/* matrix A, stored in the first KD+1 rows of the array. The */ +/* j-th column of A is stored in the j-th column of the array AB */ +/* as follows: */ +/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ +/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ + +/* On exit, AB is overwritten by values generated during the */ +/* reduction to tridiagonal form. If UPLO = 'U', the first */ +/* superdiagonal and the diagonal of the tridiagonal matrix T */ +/* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */ +/* the diagonal and first subdiagonal of T are returned in the */ +/* first two rows of AB. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KD + 1. */ + +/* Q (output) DOUBLE PRECISION array, dimension (LDQ, N) */ +/* If JOBZ = 'V', the N-by-N orthogonal matrix used in the */ +/* reduction to tridiagonal form. */ +/* If JOBZ = 'N', the array Q is not referenced. */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. If JOBZ = 'V', then */ +/* LDQ >= max(1,N). */ + +/* VL (input) DOUBLE PRECISION */ +/* VU (input) DOUBLE PRECISION */ +/* If RANGE='V', the lower and upper bounds of the interval to */ +/* be searched for eigenvalues. VL < VU. */ +/* Not referenced if RANGE = 'A' or 'I'. */ + +/* IL (input) INTEGER */ +/* IU (input) INTEGER */ +/* If RANGE='I', the indices (in ascending order) of the */ +/* smallest and largest eigenvalues to be returned. */ +/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ +/* Not referenced if RANGE = 'A' or 'V'. */ + +/* ABSTOL (input) DOUBLE PRECISION */ +/* The absolute error tolerance for the eigenvalues. */ +/* An approximate eigenvalue is accepted as converged */ +/* when it is determined to lie in an interval [a,b] */ +/* of width less than or equal to */ + +/* ABSTOL + EPS * max( |a|,|b| ) , */ + +/* where EPS is the machine precision. If ABSTOL is less than */ +/* or equal to zero, then EPS*|T| will be used in its place, */ +/* where |T| is the 1-norm of the tridiagonal matrix obtained */ +/* by reducing AB to tridiagonal form. */ + +/* Eigenvalues will be computed most accurately when ABSTOL is */ +/* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */ +/* If this routine returns with INFO>0, indicating that some */ +/* eigenvectors did not converge, try setting ABSTOL to */ +/* 2*DLAMCH('S'). */ + +/* See "Computing Small Singular Values of Bidiagonal Matrices */ +/* with Guaranteed High Relative Accuracy," by Demmel and */ +/* Kahan, LAPACK Working Note #3. */ + +/* M (output) INTEGER */ +/* The total number of eigenvalues found. 0 <= M <= N. */ +/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ + +/* W (output) DOUBLE PRECISION array, dimension (N) */ +/* The first M elements contain the selected eigenvalues in */ +/* ascending order. */ + +/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */ +/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ +/* contain the orthonormal eigenvectors of the matrix A */ +/* corresponding to the selected eigenvalues, with the i-th */ +/* column of Z holding the eigenvector associated with W(i). */ +/* If an eigenvector fails to converge, then that column of Z */ +/* contains the latest approximation to the eigenvector, and the */ +/* index of the eigenvector is returned in IFAIL. */ +/* If JOBZ = 'N', then Z is not referenced. */ +/* Note: the user must ensure that at least max(1,M) columns are */ +/* supplied in the array Z; if RANGE = 'V', the exact value of M */ +/* is not known in advance and an upper bound must be used. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension (7*N) */ + +/* IWORK (workspace) INTEGER array, dimension (5*N) */ + +/* IFAIL (output) INTEGER array, dimension (N) */ +/* If JOBZ = 'V', then if INFO = 0, the first M elements of */ +/* IFAIL are zero. If INFO > 0, then IFAIL contains the */ +/* indices of the eigenvectors that failed to converge. */ +/* If JOBZ = 'N', then IFAIL is not referenced. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: if INFO = i, then i eigenvectors failed to converge. */ +/* Their indices are stored in array IFAIL. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + --iwork; + --ifail; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + alleig = lsame_(range, "A"); + valeig = lsame_(range, "V"); + indeig = lsame_(range, "I"); + lower = lsame_(uplo, "L"); + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (alleig || valeig || indeig)) { + *info = -2; + } else if (! (lower || lsame_(uplo, "U"))) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*kd < 0) { + *info = -5; + } else if (*ldab < *kd + 1) { + *info = -7; + } else if (wantz && *ldq < max(1,*n)) { + *info = -9; + } else { + if (valeig) { + if (*n > 0 && *vu <= *vl) { + *info = -11; + } + } else if (indeig) { + if (*il < 1 || *il > max(1,*n)) { + *info = -12; + } else if (*iu < min(*n,*il) || *iu > *n) { + *info = -13; + } + } + } + if (*info == 0) { + if (*ldz < 1 || wantz && *ldz < *n) { + *info = -18; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("DSBEVX", &i__1); + return 0; + } + +/* Quick return if possible */ + + *m = 0; + if (*n == 0) { + return 0; + } + + if (*n == 1) { + *m = 1; + if (lower) { + tmp1 = ab[ab_dim1 + 1]; + } else { + tmp1 = ab[*kd + 1 + ab_dim1]; + } + if (valeig) { + if (! (*vl < tmp1 && *vu >= tmp1)) { + *m = 0; + } + } + if (*m == 1) { + w[1] = tmp1; + if (wantz) { + z__[z_dim1 + 1] = 1.; + } + } + return 0; + } + +/* Get machine constants. */ + + safmin = dlamch_("Safe minimum"); + eps = dlamch_("Precision"); + smlnum = safmin / eps; + bignum = 1. / smlnum; + rmin = sqrt(smlnum); +/* Computing MIN */ + d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); + rmax = min(d__1,d__2); + +/* Scale matrix to allowable range, if necessary. */ + + iscale = 0; + abstll = *abstol; + if (valeig) { + vll = *vl; + vuu = *vu; + } else { + vll = 0.; + vuu = 0.; + } + anrm = dlansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]); + if (anrm > 0. && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + if (lower) { + dlascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, + info); + } else { + dlascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, + info); + } + if (*abstol > 0.) { + abstll = *abstol * sigma; + } + if (valeig) { + vll = *vl * sigma; + vuu = *vu * sigma; + } + } + +/* Call DSBTRD to reduce symmetric band matrix to tridiagonal form. */ + + indd = 1; + inde = indd + *n; + indwrk = inde + *n; + dsbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde], + &q[q_offset], ldq, &work[indwrk], &iinfo); + +/* If all eigenvalues are desired and ABSTOL is less than or equal */ +/* to zero, then call DSTERF or SSTEQR. If this fails for some */ +/* eigenvalue, then try DSTEBZ. */ + + test = FALSE_; + if (indeig) { + if (*il == 1 && *iu == *n) { + test = TRUE_; + } + } + if ((alleig || test) && *abstol <= 0.) { + dcopy_(n, &work[indd], &c__1, &w[1], &c__1); + indee = indwrk + (*n << 1); + if (! wantz) { + i__1 = *n - 1; + dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); + dsterf_(n, &w[1], &work[indee], info); + } else { + dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz); + i__1 = *n - 1; + dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); + dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[ + indwrk], info); + if (*info == 0) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + ifail[i__] = 0; +/* L10: */ + } + } + } + if (*info == 0) { + *m = *n; + goto L30; + } + *info = 0; + } + +/* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */ + + if (wantz) { + *(unsigned char *)order = 'B'; + } else { + *(unsigned char *)order = 'E'; + } + indibl = 1; + indisp = indibl + *n; + indiwo = indisp + *n; + dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ + inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ + indwrk], &iwork[indiwo], info); + + if (wantz) { + dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ + indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], & + ifail[1], info); + +/* Apply orthogonal matrix used in reduction to tridiagonal */ +/* form to eigenvectors returned by DSTEIN. */ + + i__1 = *m; + for (j = 1; j <= i__1; ++j) { + dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1); + dgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, & + c_b34, &z__[j * z_dim1 + 1], &c__1); +/* L20: */ + } + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + +L30: + if (iscale == 1) { + if (*info == 0) { + imax = *m; + } else { + imax = *info - 1; + } + d__1 = 1. / sigma; + dscal_(&imax, &d__1, &w[1], &c__1); + } + +/* If eigenvalues are not in order, then sort them, along with */ +/* eigenvectors. */ + + if (wantz) { + i__1 = *m - 1; + for (j = 1; j <= i__1; ++j) { + i__ = 0; + tmp1 = w[j]; + i__2 = *m; + for (jj = j + 1; jj <= i__2; ++jj) { + if (w[jj] < tmp1) { + i__ = jj; + tmp1 = w[jj]; + } +/* L40: */ + } + + if (i__ != 0) { + itmp1 = iwork[indibl + i__ - 1]; + w[i__] = w[j]; + iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; + w[j] = tmp1; + iwork[indibl + j - 1] = itmp1; + dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], + &c__1); + if (*info != 0) { + itmp1 = ifail[i__]; + ifail[i__] = ifail[j]; + ifail[j] = itmp1; + } + } +/* L50: */ + } + } + + return 0; + +/* End of DSBEVX */ + +} /* dsbevx_ */ |