aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsbevx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsbevx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsbevx.c')
-rw-r--r--contrib/libs/clapack/dsbevx.c520
1 files changed, 520 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsbevx.c b/contrib/libs/clapack/dsbevx.c
new file mode 100644
index 0000000000..29916a010c
--- /dev/null
+++ b/contrib/libs/clapack/dsbevx.c
@@ -0,0 +1,520 @@
+/* dsbevx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b14 = 1.;
+static integer c__1 = 1;
+static doublereal c_b34 = 0.;
+
+/* Subroutine */ int dsbevx_(char *jobz, char *range, char *uplo, integer *n,
+ integer *kd, doublereal *ab, integer *ldab, doublereal *q, integer *
+ ldq, doublereal *vl, doublereal *vu, integer *il, integer *iu,
+ doublereal *abstol, integer *m, doublereal *w, doublereal *z__,
+ integer *ldz, doublereal *work, integer *iwork, integer *ifail,
+ integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1,
+ i__2;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, jj;
+ doublereal eps, vll, vuu, tmp1;
+ integer indd, inde;
+ doublereal anrm;
+ integer imax;
+ doublereal rmin, rmax;
+ logical test;
+ integer itmp1, indee;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ doublereal sigma;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *);
+ integer iinfo;
+ char order[1];
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dswap_(integer *, doublereal *, integer
+ *, doublereal *, integer *);
+ logical lower, wantz;
+ extern doublereal dlamch_(char *);
+ logical alleig, indeig;
+ integer iscale, indibl;
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *);
+ extern doublereal dlansb_(char *, char *, integer *, integer *,
+ doublereal *, integer *, doublereal *);
+ logical valeig;
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *);
+ doublereal safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ doublereal abstll, bignum;
+ extern /* Subroutine */ int dsbtrd_(char *, char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *);
+ integer indisp;
+ extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *, doublereal *,
+ integer *, doublereal *, integer *, integer *, integer *),
+ dsterf_(integer *, doublereal *, doublereal *, integer *);
+ integer indiwo;
+ extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal
+ *, doublereal *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *, doublereal *, integer *,
+ integer *, doublereal *, integer *, integer *);
+ integer indwrk;
+ extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *);
+ integer nsplit;
+ doublereal smlnum;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSBEVX computes selected eigenvalues and, optionally, eigenvectors */
+/* of a real symmetric band matrix A. Eigenvalues and eigenvectors can */
+/* be selected by specifying either a range of values or a range of */
+/* indices for the desired eigenvalues. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* RANGE (input) CHARACTER*1 */
+/* = 'A': all eigenvalues will be found; */
+/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
+/* will be found; */
+/* = 'I': the IL-th through IU-th eigenvalues will be found. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
+
+/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
+/* On entry, the upper or lower triangle of the symmetric band */
+/* matrix A, stored in the first KD+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
+
+/* On exit, AB is overwritten by values generated during the */
+/* reduction to tridiagonal form. If UPLO = 'U', the first */
+/* superdiagonal and the diagonal of the tridiagonal matrix T */
+/* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
+/* the diagonal and first subdiagonal of T are returned in the */
+/* first two rows of AB. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD + 1. */
+
+/* Q (output) DOUBLE PRECISION array, dimension (LDQ, N) */
+/* If JOBZ = 'V', the N-by-N orthogonal matrix used in the */
+/* reduction to tridiagonal form. */
+/* If JOBZ = 'N', the array Q is not referenced. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. If JOBZ = 'V', then */
+/* LDQ >= max(1,N). */
+
+/* VL (input) DOUBLE PRECISION */
+/* VU (input) DOUBLE PRECISION */
+/* If RANGE='V', the lower and upper bounds of the interval to */
+/* be searched for eigenvalues. VL < VU. */
+/* Not referenced if RANGE = 'A' or 'I'. */
+
+/* IL (input) INTEGER */
+/* IU (input) INTEGER */
+/* If RANGE='I', the indices (in ascending order) of the */
+/* smallest and largest eigenvalues to be returned. */
+/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
+/* Not referenced if RANGE = 'A' or 'V'. */
+
+/* ABSTOL (input) DOUBLE PRECISION */
+/* The absolute error tolerance for the eigenvalues. */
+/* An approximate eigenvalue is accepted as converged */
+/* when it is determined to lie in an interval [a,b] */
+/* of width less than or equal to */
+
+/* ABSTOL + EPS * max( |a|,|b| ) , */
+
+/* where EPS is the machine precision. If ABSTOL is less than */
+/* or equal to zero, then EPS*|T| will be used in its place, */
+/* where |T| is the 1-norm of the tridiagonal matrix obtained */
+/* by reducing AB to tridiagonal form. */
+
+/* Eigenvalues will be computed most accurately when ABSTOL is */
+/* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
+/* If this routine returns with INFO>0, indicating that some */
+/* eigenvectors did not converge, try setting ABSTOL to */
+/* 2*DLAMCH('S'). */
+
+/* See "Computing Small Singular Values of Bidiagonal Matrices */
+/* with Guaranteed High Relative Accuracy," by Demmel and */
+/* Kahan, LAPACK Working Note #3. */
+
+/* M (output) INTEGER */
+/* The total number of eigenvalues found. 0 <= M <= N. */
+/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
+
+/* W (output) DOUBLE PRECISION array, dimension (N) */
+/* The first M elements contain the selected eigenvalues in */
+/* ascending order. */
+
+/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
+/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
+/* contain the orthonormal eigenvectors of the matrix A */
+/* corresponding to the selected eigenvalues, with the i-th */
+/* column of Z holding the eigenvector associated with W(i). */
+/* If an eigenvector fails to converge, then that column of Z */
+/* contains the latest approximation to the eigenvector, and the */
+/* index of the eigenvector is returned in IFAIL. */
+/* If JOBZ = 'N', then Z is not referenced. */
+/* Note: the user must ensure that at least max(1,M) columns are */
+/* supplied in the array Z; if RANGE = 'V', the exact value of M */
+/* is not known in advance and an upper bound must be used. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (7*N) */
+
+/* IWORK (workspace) INTEGER array, dimension (5*N) */
+
+/* IFAIL (output) INTEGER array, dimension (N) */
+/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
+/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
+/* indices of the eigenvectors that failed to converge. */
+/* If JOBZ = 'N', then IFAIL is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = i, then i eigenvectors failed to converge. */
+/* Their indices are stored in array IFAIL. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --iwork;
+ --ifail;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ alleig = lsame_(range, "A");
+ valeig = lsame_(range, "V");
+ indeig = lsame_(range, "I");
+ lower = lsame_(uplo, "L");
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (alleig || valeig || indeig)) {
+ *info = -2;
+ } else if (! (lower || lsame_(uplo, "U"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*kd < 0) {
+ *info = -5;
+ } else if (*ldab < *kd + 1) {
+ *info = -7;
+ } else if (wantz && *ldq < max(1,*n)) {
+ *info = -9;
+ } else {
+ if (valeig) {
+ if (*n > 0 && *vu <= *vl) {
+ *info = -11;
+ }
+ } else if (indeig) {
+ if (*il < 1 || *il > max(1,*n)) {
+ *info = -12;
+ } else if (*iu < min(*n,*il) || *iu > *n) {
+ *info = -13;
+ }
+ }
+ }
+ if (*info == 0) {
+ if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -18;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSBEVX", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *m = 0;
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ *m = 1;
+ if (lower) {
+ tmp1 = ab[ab_dim1 + 1];
+ } else {
+ tmp1 = ab[*kd + 1 + ab_dim1];
+ }
+ if (valeig) {
+ if (! (*vl < tmp1 && *vu >= tmp1)) {
+ *m = 0;
+ }
+ }
+ if (*m == 1) {
+ w[1] = tmp1;
+ if (wantz) {
+ z__[z_dim1 + 1] = 1.;
+ }
+ }
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ safmin = dlamch_("Safe minimum");
+ eps = dlamch_("Precision");
+ smlnum = safmin / eps;
+ bignum = 1. / smlnum;
+ rmin = sqrt(smlnum);
+/* Computing MIN */
+ d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
+ rmax = min(d__1,d__2);
+
+/* Scale matrix to allowable range, if necessary. */
+
+ iscale = 0;
+ abstll = *abstol;
+ if (valeig) {
+ vll = *vl;
+ vuu = *vu;
+ } else {
+ vll = 0.;
+ vuu = 0.;
+ }
+ anrm = dlansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
+ if (anrm > 0. && anrm < rmin) {
+ iscale = 1;
+ sigma = rmin / anrm;
+ } else if (anrm > rmax) {
+ iscale = 1;
+ sigma = rmax / anrm;
+ }
+ if (iscale == 1) {
+ if (lower) {
+ dlascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab,
+ info);
+ } else {
+ dlascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab,
+ info);
+ }
+ if (*abstol > 0.) {
+ abstll = *abstol * sigma;
+ }
+ if (valeig) {
+ vll = *vl * sigma;
+ vuu = *vu * sigma;
+ }
+ }
+
+/* Call DSBTRD to reduce symmetric band matrix to tridiagonal form. */
+
+ indd = 1;
+ inde = indd + *n;
+ indwrk = inde + *n;
+ dsbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde],
+ &q[q_offset], ldq, &work[indwrk], &iinfo);
+
+/* If all eigenvalues are desired and ABSTOL is less than or equal */
+/* to zero, then call DSTERF or SSTEQR. If this fails for some */
+/* eigenvalue, then try DSTEBZ. */
+
+ test = FALSE_;
+ if (indeig) {
+ if (*il == 1 && *iu == *n) {
+ test = TRUE_;
+ }
+ }
+ if ((alleig || test) && *abstol <= 0.) {
+ dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
+ indee = indwrk + (*n << 1);
+ if (! wantz) {
+ i__1 = *n - 1;
+ dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
+ dsterf_(n, &w[1], &work[indee], info);
+ } else {
+ dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
+ i__1 = *n - 1;
+ dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
+ dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
+ indwrk], info);
+ if (*info == 0) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ ifail[i__] = 0;
+/* L10: */
+ }
+ }
+ }
+ if (*info == 0) {
+ *m = *n;
+ goto L30;
+ }
+ *info = 0;
+ }
+
+/* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */
+
+ if (wantz) {
+ *(unsigned char *)order = 'B';
+ } else {
+ *(unsigned char *)order = 'E';
+ }
+ indibl = 1;
+ indisp = indibl + *n;
+ indiwo = indisp + *n;
+ dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
+ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
+ indwrk], &iwork[indiwo], info);
+
+ if (wantz) {
+ dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
+ indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
+ ifail[1], info);
+
+/* Apply orthogonal matrix used in reduction to tridiagonal */
+/* form to eigenvectors returned by DSTEIN. */
+
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
+ dgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, &
+ c_b34, &z__[j * z_dim1 + 1], &c__1);
+/* L20: */
+ }
+ }
+
+/* If matrix was scaled, then rescale eigenvalues appropriately. */
+
+L30:
+ if (iscale == 1) {
+ if (*info == 0) {
+ imax = *m;
+ } else {
+ imax = *info - 1;
+ }
+ d__1 = 1. / sigma;
+ dscal_(&imax, &d__1, &w[1], &c__1);
+ }
+
+/* If eigenvalues are not in order, then sort them, along with */
+/* eigenvectors. */
+
+ if (wantz) {
+ i__1 = *m - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__ = 0;
+ tmp1 = w[j];
+ i__2 = *m;
+ for (jj = j + 1; jj <= i__2; ++jj) {
+ if (w[jj] < tmp1) {
+ i__ = jj;
+ tmp1 = w[jj];
+ }
+/* L40: */
+ }
+
+ if (i__ != 0) {
+ itmp1 = iwork[indibl + i__ - 1];
+ w[i__] = w[j];
+ iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
+ w[j] = tmp1;
+ iwork[indibl + j - 1] = itmp1;
+ dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
+ &c__1);
+ if (*info != 0) {
+ itmp1 = ifail[i__];
+ ifail[i__] = ifail[j];
+ ifail[j] = itmp1;
+ }
+ }
+/* L50: */
+ }
+ }
+
+ return 0;
+
+/* End of DSBEVX */
+
+} /* dsbevx_ */